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Motivation

d Modern fMRI studies of human cognition use data
from multiple subjects.

d Employing the supervised information in MVP
methods for functional aligning the multi-subject
fMRI data.
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fMRI Data: Vectorization

fMRI Data: Vector

TR = Time of repetition time

——
eoece.

voxels

Volume Voxel brain image data
- oxel — size: ~10* voxels
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Main disciplines in the human brain decoding

o Multivariate Pattern Analysis (MVP)
» Creating a classification model for new stimuli

o Representational Similarity Analysis (RSA)
» Understanding new patterns by using clustering

= Hyperalignment
» Matching generated patterns in multi-subject problems

= Stimulus-model-based encoding & decoding
» Matching generated models for new category of stimuli
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Main research areas in the human brain decoding

o Multivariate Pattern AnaIyS|s (MVP)
» Creating a classifi

This study seeks a
Supervised Hyperalignment

utilized for MVP
classification problems
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Hyperalignment of representational spaces
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Inter-Subject Correlation (1SC)

ISC(X®, XWY) = (1) (X TXU)) =
1 |4 N 1 vV Vv
n=1 m=1n=1

o Fori— th subject: X® = { W) } e R™Y, where T denotes the

number of time point in units of TRs, V is number of
voxels.

o The column representation of functional activities in n — th

voxel:
XD € BT = {x,1x, € X andm = 1.7}
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Hyperalignment based on ISC function

p =argmax » ISC(X"R® XWRU))

1,j=1:5 1<J

= argmax ) _ 7 Yan L X,

1,j=1:5 1<j m=1n=1

o where R® = { (@) } e RV*V is the HA solution for i — th subject.

o If the functional activities are column-wise standardized

XWD~n(0,1), the ISC lies in [—1,+1], where the large values
represent better alignment.

o The general assumption in the basic hyperalignment is that
the R® are noisy ‘rotation’ of a common template.
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Hyperalignment: Formulation

p = arg minz HX(i)R(i) _ X(j)R(j)H%

1,7=1:S i< ]

subjectto  (RV)TAWRY =1, (=15

o AW ¢ =1:5 are symmetric and positive definite.

o AW =1 : we have hyperalignment or a multi-set orthogonal
Procrustes problem, which is commonly used in share
analysis

o A® = (x®)'Xx® : we have a form of multi-set Canonical
Correlation Analysis (CCA).
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Hyperalignment: Formulation (cont.)

Lemma 1. The equation (4) is equivalent to:

S
p = arg minz IXORO — G|%
i=1

subject to RNHTAOR® =T, ¢=1:5
where G € RV is the HA template:
1 S
G = — XWRG)
52

o HA template (G) can be used for functional alignment in the test
stage before MVP analysis.

o Most of previous studies used CCA for finding this template.
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Hyperalignment: Formulation (cont.)

Lemma 2. Canonical Correlation Analysis (CCA) finds an
optimum solution for solving (4) by exploiting the objective

function 'maixs((R(i))TC(i’j )R )), and then G also can
1,7=1:

be calculated based on (6). Briefly, the CCA solution can be

formulated as follows:

( (R))TCEHIRG) )

p = argmax . . : . : :

i j=1:8 \/((R(Z))TC(%)R(%))((R(J))TC(J)R(J))
(7)

where C(1) ¢ RV*XV — E{(X(i))TX(i)} — (X(i))TX(i),

CU) ¢ RVXV — E{(Xumxm} — (XUN)TXD), and

Cd) ¢ RV*XV — FI(XINYTX0U) | = (XEOYTXU) The
S (X)) (X))

solution of CCA can be obtained by computing a generalized
eigenvalue decomposition problem
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Remark

o Consider fMRI time series included visual stimuli, where two
subjects watch two photos of cats as well as two photos of
human faces:

Stimuli sequence: |catl, facel, cat2, face2]

o The unsupervised solution finds two mappings to maximize the
correlation in the voxel-level, where the voxels for each subject
are only compared with the voxels for other subjects with the
same locations.

o Unsupervised HA solution is shown by:

(S1l:catl T S2:catl); (Sl:facel 1 S2:facel);
(S1l:cat2 1 S2:cat2) ; (S1:face2 1 S2:face2)
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Remark (cont.)

o The CCA solution here just maximized the correlation for the
stimuli in the same locations, while they must also maximize
the correlation between all stimuli in the same category and
minimize the correlation between different categories of
stimuli.

o Our approach for solving mentioned issues can be shown by:

(S1:catl,2 1 S2:catl,2); (S1:facel,2 1 S2: facel, 2);
(S1:catl,2 | S2:facel, 2),; (S1l:facel,2 | S2:catl,?2)
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Remark (cont.)

o The CCA solution here just maximized the correlation for the
stimuli in the same locations, while they must also maximize
the correlation between all stimuli in the same category and
minimize the correlation between different categories of
stimuli.

o Our approach for solving mentioned issues can be shown by:

within-class terms
(S1:catl,2 1 S2:catl,2); (S1:facel,2 1 S2: facel, 2);
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Remark (cont.)

o The CCA solution here just maximized the correlation for the
stimuli in the same locations, while they must also maximize
the correlation between all stimuli in the same category and
minimize the correlation between different categories of
stimuli.

o Our approach for solving mentioned issues can be shown by:

(S1:catl,2 1 S2:catl,2); (S1:facel,2 1 S2: facel, 2);
(S1:catl,2 | S2:facel, 2),; (S1l:facel,2 | S2:catl,?2)

between-classes terms
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Local Discriminant Hyperalignment (LDHA)

o This paper proposes Local Discriminant Hyperalignment
(LDHA), which combines the idea of locality into CCA.

o Since unaligned (before applying the HA method) functional
activities in different subjects cannot be directly compared
with each other, the neighborhoods matrix a is defined as
follows:

0 ym#yn, m,n=1T,m<n
1 Ym — Yn

where Y = {y,} € R' is class labels in the train-set.

Local Discriminant Hyperalignment for multi-subject fMRI data alighment 15/26




LDHA (cont.)

Wi = 20 D XXy + XX

o Between-classes neighborhoods B(/) = {bf,f,{f} e RV*V:

T

T
bl =32 > (I—am)xipxp+(1-au)x, X,
{=1 k=1
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LDHA (cont.)

o Supervised Covariance matrix:

~i . n .
can = wan _ (ﬁ) :1¢)
o 7n is the number of non-zero cells in the matrix a, and
T is the number of time points in unites of TRs.

o LDHA objective function is denoted as follows:

(R(@)Tfj(i,j)R(j)
p = argmax . —— . —
ii=1:8,i<j ((R(’&))TC(Z)R(%))((R(J))TC(J)R(J))
subjectto  (RU)TCORW =T, ¢ =1.5
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LDHA Algorithm

Algorithm 1 Local Discriminate Hyperalignment (LDHA)

Input: Data points X (¥ and X, class labels Y:

Output: Hyperalignment parameters R(*) and R):
Method:
1. Generate « by (9).
2. Calculate W(47) B(%:9) by using (10) and (11).
3. Calculate C(&). ) O

- . /2~ . .
4. Compute H() = (C@) "€ ()

5. Perform SVD: H(#3) = P(::3) A (4:7) (Q(m)) .

: N\ T2
6. Return R() = (C(’L)> P(.3)
-1

and RG) — (c<j>) Q.
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A MVP template based on LHDA

Algorithm 2 A general template for MVP analysis by using
Local Discriminate Hyperalignment (LDHA)

Input: Train Set X9, = 1:5, Test Set X, j = 1:3:
Output: Classification Performance (ACC, AUC):
Method:

01. Initiate R, = 1:89.

02. Do

03. Foreach subject X(9) j = 1:S:

04. Update R() by Alg. 1 and X©) ¢ = i+1:8S.

05. End Foreach

06. Until X(DR ), j = 1:S do not change in this step.

07. Train a classifier by X®WR® = 1:5

08. Initiate R, j = 1:9.

09. Generate G based on (6) by using R?, i = 1:5

10. Foreach subject X, j = 1:9:

11. Compute R by classical HA (Eq. 5,7) and G.
12. End Foreach o X
13. Evaluate the classifier by using XU)RU) j = 1:5.
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Simple Tasks Analysis

Table 1: Accuracy of Classification Methods

<%
| L
e AU

Data Sets v-SVM HA KHA SCCA SVD-HA LDHA
DS005 (2 classes) 71.65+£0.97 81.274£0.59 83.064+0.36 85.2940.49 90.82+1.23 94.32+0.16
DS105 (8 classes)  22.89+1.02 30.03+0.87 32.62+0.52 37.14+091 40.21+0.83  54.0440.09
DS107 (4 classes) 38.84+0.82 43.014£0.56 46.82+0.37 52.6940.69 59.54+0.99 74.7340.19
DS117 (2 classes) 73.32+1.67 77.93+0.29 84.22+0.44 83.32+0.41 95.62+0.83 95.07+0.27
Table 2: Area Under the ROC Curve (AUC) of Classification Methods

Data Sets v-SVM HA KHA SCCA SVD-HA LDHA
DSO005 (2 classes) 68.37+1.01 70.32+0.92 82.22+0.42 80.91+£0.21 88.54+0.71 93.25+0.92
DS105 (8 classes)  21.764+0.91 28.91£1.03 30.35+0.39 36.234+0.57 37.61+£0.62 53.8610.17
DS107 (4 classes) 36.84+1.45 40.21£0.33 43.634+0.61 50.414+0.92 57.5440.31 72.03+0.37
DS117 (2 classes)  70.1740.59  76.144+0.49 81.54+0.92 80.924+0.28 92.14+0.42  94.231+0.94

DS005: Mixed-gambles task

DS105: Visual Object Recognition

DS107: Word and Object Processing

DS117: Multi-subject, multi-modal human neuroimaging dataset
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Complex Tasks Analysis
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Complex Tasks Analysis (cont.)
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Conclusion

o We propose LDHA method for MVP classification by
combining the idea of locality into CCA.

o Experimental studies on multi-subject MVP analysis
demonstrate that the LDHA method achieves superior
performance to other state-of-the-art HA algorithms.

o We will plan to develop:
v' A kernel-based version of LDHA.
v Whole-brain hyperalignment approach based on LDHA.
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Thanks for your attention!

For more details, contact:

dgzhang(@nuaa.edu.cn

http://parnec.nuaa.edu.cn/zhangdq/




