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q Finding groups of objects such that the objects in a group will be similar
(or related) to one another and different from (or unrelated to) the
objects in other groups.

Inter-cluster 
distances are 
maximized

Intra-cluster 
distances are 
minimized
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Our consideration >>

In practice >>
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q We need a robust diversity metirc

q The performance of CES is significantly sensitive to the threshold value.

>> NMI > 0.53 < How can we find
the threshold value
in a real world
application?
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q Main Idea of mapping function is transforming data to stable dimensions. 

Mapped Data
Original Data
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<< calculating the zero-mean of data
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<< constructing R
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<< calculating the eigenvalues
and eigenvectors and sort
them
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<< the optional feature selection
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<< apply mapping function on data points
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q Transforming data point to similarity matrix S

∅ is the scaling parameter for controlling how rapidly affinity	𝑆$,&
∅ can be calculated automatically by Ng et al., 2001.

Algorithm 1 The Mapping Function

Input: Data set X̂ 2 Rm⇥n = {x̂1, x̂2, . . . , x̂n},
d as number of features:
d = 0 is considered for deactivating the feature

selection
Output: Mapped data set Y
Method:

1. Calculating simple average X̄ by using (1).
2. Calculating X by using (2).
3. Calculating R = E{XX

T } = 1
n

Pn
i=1 xix

T
i .

4. Calculating ⇤ and Q as eigenvalues/vectors of R.
5. Sorting Q based on descending values of �.
6. if d is not zero (d 6= 0)

then selecting [1, d] features of Q, and sorting as Qd,
else Qd = Q, d = m.
end if

7. Return Y = Q

T
d X .

Like other spectral methods, this paper calculates the
non-symmetric distances (adjacency) matrix of Y , which
is denoted by A [17], [18]. In the rest of this paper, our
proposed method will be applied to the matrix A for each
individual clustering results. Moreover, this paper uses (17)
as transform function for converting distances matrix A to
similarity matrix S. This transformation can optimize the
memory usage [17], [18].

Si,j =

(
exp

⇣
�kyi�yjk2

�2

⌘
if i 6= j

0 if i = j

(17)

where yn denotes the n� th data point and kyi � yjk2 will
be calculated by Euclidean distance. The scaling parameter
� controls how rapidly affinity Si,j falls off with the distance
between the data points. This paper uses Ng et al. method for
estimating this value automatically (count non-zero values in
each columns of distance matrix A) [17], [18].

This paper introduces Two Kernels Spectral Clustering
(TKSC) algorithm, which can generate all individual results
(⇣). Unlike normal clustering algorithms, which just generate
a partition as the result, the TKSC algorithm generates two
independent consequences, which are called Partitional re-
sult and Modular result, for each of the individual clustering
results by using two kernels (Cl = {P l

,M}). Partitional
result (P l) is a partitioning of data points same as the result
of other clustering methods; and Modular result (M ) is a
network of data points, which can be represented by a graph.
This paper uses Modular result as a reference for evaluating
the diversity of generated partition by using community de-
tection methods [9], [10]. Furthermore, kernel in the TKSC
refers to Laplacian equation in spectral methods because it
transforms data points in new environment, especially linear
environment for non-linear data sets.

Partitional Kernel: This paper uses following equation

for generating Partitional result:

LP = I�D

1/2
SD

1/2 (18)

where I is the identity matrix [17]; D is the diagonal matrix
of S (D = diag(S)); and S will be calculated by (17). As
shows in follows, the eigendecomposition is performed for
calculating eigenvectors of LP :

V = eigens(LP ) (19)

where the matrix V is the eigenvectors of Partitional Kernel.
The coefficient W will be defined for normalizing the matrix
V :

Wi =

 
nX

i=1

Vi1 ⇥ Vi2

! 1
2

+ ✏ (20)

where Vij shows the i-th row and j-th column of the matrix
V ; and ✏ is used for omitting the effect of zeros in the
matrix W . This paper uses ✏ = 10�20 for generating
the experimental results. Also, n denotes the number of
instances in the data set (W 2 Rn). The normalized matrix
of eigenvectors will be calculated as follows:

Uij = Vij ⇥Wi (21)

where Uij and Vij denote the i-th row and j-th column of
these matrices; and Wi is the i-th row of the matrix W

which is used for normalization. The Partitional result of
TKSC will be calculated by applying the simple k-means
[8] on the matrix U as follows:

P

l = kmeans(U, l) (22)

where K is the number of classes in individual results; and
U will be calculated by (21).

Modular Kernel: This paper uses following equation for
generating Modular result:

LM = D � S (23)

where D is the diagonal matrix of S (D = diag(S));
and S will be calculated by (17). This paper considers the
normalized matrix of LM an adjacency matrix of graph
representation of individual result as follows:

M =
1

max(LM )
LM (24)

where LM is calculated by (23), and the function max finds
the biggest value in the matrix LM . Further, all values in
the matrix M , which is called Modular result, are between
zero and one. Algorithm 2 shows the pseudo code of the
TKSC method. Tracing errors can control similarity and
repetition of specific answers in clustering problems. There
is a wide range of metrics, which are based on Shannon’s
entropy[8], [5], for evaluating the diversity of individual
results in the CES methods, such as MI [1], NMI [12],
APMM [5], MAX [8], and SMI [13]. Shannon’s entropy
uses the logarithm of probability of individual results for
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<< calculating the similarity and its
diagonal matrix

Step 2: Generating individual results
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<< calculating the first
Laplacian matrix as the
paritional kernel

Step 2: Generating individual results
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<< calculating the second
Laplacian matrix as the
modular kernel

Step 2: Generating individual results
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<< calculating the eigenvectors of Lp

Step 2: Generating individual results
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Normalizing the eigenvectors >>

Step 2: Generating individual results
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<< Normalizing the modular
result

Step 2: Generating individual results
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<< calculating the partitional results

Step 2: Generating individual results
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q This paper proposes Normalized Modularity for calculating the diversity by
exploiting the partitional and modular results.

q This metric employs the concept of Expected Value for calculating the diversity.

q This metric is a new branch of famous Modularity, which is an effective metric in
the field of community detection, for general clustering problem.

P is Partitional result. M is Modular result.
z is sum of all cells in the matrix M (𝑚 = ∑ 𝑀$&+ ).
𝑐$ and 𝑐& are the number of classes for the i-th and j-th instances in the P.
𝜎$,𝜎& show the degree of i-th and j-th nodes in the graph of the M.
This diversity evaluation is 0 ≤ 𝑁𝑀 ≤ 1.

Algorithm 2 Two Kernels Spectral Clustering (TKSC)
Input: Distance matrix A, Number of clusters l

Output: Partitional result P l, Modular result M
Method:

1. Generate similarity matrix S by using A on (17).
2. Generate diagonal matrix D by using S.
3. Generate LP by applying S and D on (18).
4. Generate LM by using S and D on (23).
5. Generate the matrix V as eigenvectors of Lp.
6. Generate U as normalized V by using (20) and (21).
7. Generate M by applying LM on (24).
8. P l = kmeans(U, l)
9. Return P

l and M

evaluating the diversity but there is no mathematical prove
that all real-world data sets have logarithmic behavior. In
community detection arena [9], [10], Modularity, which is
based on Expected Value, was proposed for solving this
problem. Recently, many papers proved that modularity [9],
[10] can estimate the diversity on graph data sets better
than entropy based methods. Unfortunately, modularity can
measure the diversity only for graph data [9]. This paper
proposes TKSC, which can generate a graph based result,
called Modular result, for any types of data sets in real-world
application. Since modularity was defined for community
detection arena, this paper introduces a redefined version of
modularity metric for general clustering problems, which
is called Normalized Modularity (NM ). It is used for
evaluating the diversity of the individual results based on
Modular result of the TKSC as follows:

NM(P l
,M) =

1

2
+

1

4z

X

ij

h
�ij �

�i�j

2z

i
⇥ (ci, cj) (25)

where P

l and M are calculated by (22) and (24), respec-
tively; z is sum of all cells in the matrix M (z =

P
M Mij);

and ci and cj are the cluster’s numbers of the i-th and j-th
instances in the Partitional result P l. Also, �i and �j show
the degree of i-th and j-th nodes in the graph of matrix M

(How many rows contains non-zero value in the columns i

or j). In addition �ij and ⇥ (ci, cj) will be calculated as
follows:

�ij =

⇢
0 if Mij = 0
1 Otherwise (26)

⇥ (ci, cj) =

⇢
1 if ci = cj

0 Otherwise (27)

This diversity evaluation is 0  NM  1. In the rest
of this section, we describe how NM will be used for
evaluating individual clustering results. Thresholding is used
for selecting the evaluated individual results in the CES.
Then co-association matrix is generated by using consensus
function on the selected results. Lastly, the final result is
generated by applying linkage methods on the co-association

Figure 1. In the traditional EAC, the ↵(i,j) represents the number of
clusters shared by objects with indices (i, j); and �(i,j) is the number
of partitions in which this pair of instances (i and j) is simultaneously
presented. This method assumes the weights of all individual clustering
results (↵(i,j)) are the same. This paper proposes Weighted EAC for
optimizing this method by using a weight for each individual clustering
results instead of just counting their shared clusters. While the weight can
have different definitions in the other applications, this paper uses average
of Normalized Modularity (NM) of two algorithms as the weight in the
WEAC (↵̄(i,j) =

P
↵(i,j) ⇢i,j ).

matrix. These methods generate the Dendrogram and cut
it based on the number of clusters in the result [12], [8].
In recent years, many papers have used EAC as a high-
performance consensus function for combining individual
results [12], [5], [8], [4], [3]. EAC uses the number of
clusters shared by objects over the number of partitions
in which each selected pair of objects is simultaneously
presented for generating each cell of the co-association
matrix. Figure 1 illustrates the effect of the EAC equation
(c (i, j) = ↵(i,j)

�(i,j) ) on the shape of Dendrogram. Where ↵(i,j)

represents the number of clusters shared by objects with
indices (i, j); and �(i,j) is the number of partitions in which
this pair of instances (i and j) is simultaneously presented.
As a matter of fact; EAC considers that the weights of all
algorithms results are the same. Instead of counting these
indices, this paper uses following equation, which is called
Weighted EAC (WEAC), for generating the co-association
matrix.

c (i, j) =

P
↵(i,j) ⇢i,j

� (i, j)
(28)

where ↵ (i, j) and � (i, j) are same as the EAC equation;
Also, ⇢i,j is the weight of combining the instances. Although
this weight can have different definitions in the other appli-
cations, this paper uses average of Normalized Modularity of
two algorithms as follows for combining individual results:

⇢ij =
1

2
(NM i +NM j) (29)

where NM i and NM j illustrates the Normalized Mod-
ularity of the algorithms, which generate the results for
indices i and j. In other words, as a new mechanism, this
paper generates the effective results when both algorithms

Algorithm 2 Two Kernels Spectral Clustering (TKSC)
Input: Distance matrix A, Number of clusters l

Output: Partitional result P l, Modular result M
Method:

1. Generate similarity matrix S by using A on (17).
2. Generate diagonal matrix D by using S.
3. Generate LP by applying S and D on (18).
4. Generate LM by using S and D on (23).
5. Generate the matrix V as eigenvectors of Lp.
6. Generate U as normalized V by using (20) and (21).
7. Generate M by applying LM on (24).
8. P l = kmeans(U, l)
9. Return P

l and M

evaluating the diversity but there is no mathematical prove
that all real-world data sets have logarithmic behavior. In
community detection arena [9], [10], Modularity, which is
based on Expected Value, was proposed for solving this
problem. Recently, many papers proved that modularity [9],
[10] can estimate the diversity on graph data sets better
than entropy based methods. Unfortunately, modularity can
measure the diversity only for graph data [9]. This paper
proposes TKSC, which can generate a graph based result,
called Modular result, for any types of data sets in real-world
application. Since modularity was defined for community
detection arena, this paper introduces a redefined version of
modularity metric for general clustering problems, which
is called Normalized Modularity (NM ). It is used for
evaluating the diversity of the individual results based on
Modular result of the TKSC as follows:

NM(P l
,M) =

1

2
+

1

4z

X

ij

h
�ij �

�i�j
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where P

l and M are calculated by (22) and (24), respec-
tively; z is sum of all cells in the matrix M (z =

P
M Mij);

and ci and cj are the cluster’s numbers of the i-th and j-th
instances in the Partitional result P l. Also, �i and �j show
the degree of i-th and j-th nodes in the graph of matrix M

(How many rows contains non-zero value in the columns i

or j). In addition �ij and ⇥ (ci, cj) will be calculated as
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�ij =

⇢
0 if Mij = 0
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⇥ (ci, cj) =

⇢
1 if ci = cj

0 Otherwise (27)

This diversity evaluation is 0  NM  1. In the rest
of this section, we describe how NM will be used for
evaluating individual clustering results. Thresholding is used
for selecting the evaluated individual results in the CES.
Then co-association matrix is generated by using consensus
function on the selected results. Lastly, the final result is
generated by applying linkage methods on the co-association

Figure 1. In the traditional EAC, the ↵(i,j) represents the number of
clusters shared by objects with indices (i, j); and �(i,j) is the number
of partitions in which this pair of instances (i and j) is simultaneously
presented. This method assumes the weights of all individual clustering
results (↵(i,j)) are the same. This paper proposes Weighted EAC for
optimizing this method by using a weight for each individual clustering
results instead of just counting their shared clusters. While the weight can
have different definitions in the other applications, this paper uses average
of Normalized Modularity (NM) of two algorithms as the weight in the
WEAC (↵̄(i,j) =

P
↵(i,j) ⇢i,j ).

matrix. These methods generate the Dendrogram and cut
it based on the number of clusters in the result [12], [8].
In recent years, many papers have used EAC as a high-
performance consensus function for combining individual
results [12], [5], [8], [4], [3]. EAC uses the number of
clusters shared by objects over the number of partitions
in which each selected pair of objects is simultaneously
presented for generating each cell of the co-association
matrix. Figure 1 illustrates the effect of the EAC equation
(c (i, j) = ↵(i,j)

�(i,j) ) on the shape of Dendrogram. Where ↵(i,j)

represents the number of clusters shared by objects with
indices (i, j); and �(i,j) is the number of partitions in which
this pair of instances (i and j) is simultaneously presented.
As a matter of fact; EAC considers that the weights of all
algorithms results are the same. Instead of counting these
indices, this paper uses following equation, which is called
Weighted EAC (WEAC), for generating the co-association
matrix.

c (i, j) =

P
↵(i,j) ⇢i,j

� (i, j)
(28)

where ↵ (i, j) and � (i, j) are same as the EAC equation;
Also, ⇢i,j is the weight of combining the instances. Although
this weight can have different definitions in the other appli-
cations, this paper uses average of Normalized Modularity of
two algorithms as follows for combining individual results:

⇢ij =
1

2
(NM i +NM j) (29)

where NM i and NM j illustrates the Normalized Mod-
ularity of the algorithms, which generate the results for
indices i and j. In other words, as a new mechanism, this
paper generates the effective results when both algorithms

Algorithm 2 Two Kernels Spectral Clustering (TKSC)
Input: Distance matrix A, Number of clusters l

Output: Partitional result P l, Modular result M
Method:

1. Generate similarity matrix S by using A on (17).
2. Generate diagonal matrix D by using S.
3. Generate LP by applying S and D on (18).
4. Generate LM by using S and D on (23).
5. Generate the matrix V as eigenvectors of Lp.
6. Generate U as normalized V by using (20) and (21).
7. Generate M by applying LM on (24).
8. P l = kmeans(U, l)
9. Return P

l and M

evaluating the diversity but there is no mathematical prove
that all real-world data sets have logarithmic behavior. In
community detection arena [9], [10], Modularity, which is
based on Expected Value, was proposed for solving this
problem. Recently, many papers proved that modularity [9],
[10] can estimate the diversity on graph data sets better
than entropy based methods. Unfortunately, modularity can
measure the diversity only for graph data [9]. This paper
proposes TKSC, which can generate a graph based result,
called Modular result, for any types of data sets in real-world
application. Since modularity was defined for community
detection arena, this paper introduces a redefined version of
modularity metric for general clustering problems, which
is called Normalized Modularity (NM ). It is used for
evaluating the diversity of the individual results based on
Modular result of the TKSC as follows:

NM(P l
,M) =

1

2
+

1

4z

X

ij

h
�ij �

�i�j

2z

i
⇥ (ci, cj) (25)

where P

l and M are calculated by (22) and (24), respec-
tively; z is sum of all cells in the matrix M (z =

P
M Mij);

and ci and cj are the cluster’s numbers of the i-th and j-th
instances in the Partitional result P l. Also, �i and �j show
the degree of i-th and j-th nodes in the graph of matrix M

(How many rows contains non-zero value in the columns i

or j). In addition �ij and ⇥ (ci, cj) will be calculated as
follows:

�ij =

⇢
0 if Mij = 0
1 Otherwise (26)

⇥ (ci, cj) =

⇢
1 if ci = cj

0 Otherwise (27)

This diversity evaluation is 0  NM  1. In the rest
of this section, we describe how NM will be used for
evaluating individual clustering results. Thresholding is used
for selecting the evaluated individual results in the CES.
Then co-association matrix is generated by using consensus
function on the selected results. Lastly, the final result is
generated by applying linkage methods on the co-association

Figure 1. In the traditional EAC, the ↵(i,j) represents the number of
clusters shared by objects with indices (i, j); and �(i,j) is the number
of partitions in which this pair of instances (i and j) is simultaneously
presented. This method assumes the weights of all individual clustering
results (↵(i,j)) are the same. This paper proposes Weighted EAC for
optimizing this method by using a weight for each individual clustering
results instead of just counting their shared clusters. While the weight can
have different definitions in the other applications, this paper uses average
of Normalized Modularity (NM) of two algorithms as the weight in the
WEAC (↵̄(i,j) =

P
↵(i,j) ⇢i,j ).

matrix. These methods generate the Dendrogram and cut
it based on the number of clusters in the result [12], [8].
In recent years, many papers have used EAC as a high-
performance consensus function for combining individual
results [12], [5], [8], [4], [3]. EAC uses the number of
clusters shared by objects over the number of partitions
in which each selected pair of objects is simultaneously
presented for generating each cell of the co-association
matrix. Figure 1 illustrates the effect of the EAC equation
(c (i, j) = ↵(i,j)

�(i,j) ) on the shape of Dendrogram. Where ↵(i,j)

represents the number of clusters shared by objects with
indices (i, j); and �(i,j) is the number of partitions in which
this pair of instances (i and j) is simultaneously presented.
As a matter of fact; EAC considers that the weights of all
algorithms results are the same. Instead of counting these
indices, this paper uses following equation, which is called
Weighted EAC (WEAC), for generating the co-association
matrix.

c (i, j) =

P
↵(i,j) ⇢i,j

� (i, j)
(28)

where ↵ (i, j) and � (i, j) are same as the EAC equation;
Also, ⇢i,j is the weight of combining the instances. Although
this weight can have different definitions in the other appli-
cations, this paper uses average of Normalized Modularity of
two algorithms as follows for combining individual results:

⇢ij =
1

2
(NM i +NM j) (29)

where NM i and NM j illustrates the Normalized Mod-
ularity of the algorithms, which generate the results for
indices i and j. In other words, as a new mechanism, this
paper generates the effective results when both algorithms
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Algorithm 2 Two Kernels Spectral Clustering (TKSC)
Input: Distance matrix A, Number of clusters l

Output: Partitional result P l, Modular result M
Method:

1. Generate similarity matrix S by using A on (17).
2. Generate diagonal matrix D by using S.
3. Generate LP by applying S and D on (18).
4. Generate LM by using S and D on (23).
5. Generate the matrix V as eigenvectors of Lp.
6. Generate U as normalized V by using (20) and (21).
7. Generate M by applying LM on (24).
8. P l = kmeans(U, l)
9. Return P

l and M

evaluating the diversity but there is no mathematical prove
that all real-world data sets have logarithmic behavior. In
community detection arena [9], [10], Modularity, which is
based on Expected Value, was proposed for solving this
problem. Recently, many papers proved that modularity [9],
[10] can estimate the diversity on graph data sets better
than entropy based methods. Unfortunately, modularity can
measure the diversity only for graph data [9]. This paper
proposes TKSC, which can generate a graph based result,
called Modular result, for any types of data sets in real-world
application. Since modularity was defined for community
detection arena, this paper introduces a redefined version of
modularity metric for general clustering problems, which
is called Normalized Modularity (NM ). It is used for
evaluating the diversity of the individual results based on
Modular result of the TKSC as follows:

NM(P l
,M) =

1

2
+

1

4z

X

ij

h
�ij �

�i�j

2z

i
⇥ (ci, cj) (25)

where P

l and M are calculated by (22) and (24), respec-
tively; z is sum of all cells in the matrix M (z =

P
M Mij);

and ci and cj are the cluster’s numbers of the i-th and j-th
instances in the Partitional result P l. Also, �i and �j show
the degree of i-th and j-th nodes in the graph of matrix M

(How many rows contains non-zero value in the columns i

or j). In addition �ij and ⇥ (ci, cj) will be calculated as
follows:

�ij =

⇢
0 if Mij = 0
1 Otherwise (26)

⇥ (ci, cj) =

⇢
1 if ci = cj

0 Otherwise (27)

This diversity evaluation is 0  NM  1. In the rest
of this section, we describe how NM will be used for
evaluating individual clustering results. Thresholding is used
for selecting the evaluated individual results in the CES.
Then co-association matrix is generated by using consensus
function on the selected results. Lastly, the final result is
generated by applying linkage methods on the co-association

Figure 1. In the traditional EAC, the ↵(i,j) represents the number of
clusters shared by objects with indices (i, j); and �(i,j) is the number
of partitions in which this pair of instances (i and j) is simultaneously
presented. This method assumes the weights of all individual clustering
results (↵(i,j)) are the same. This paper proposes Weighted EAC for
optimizing this method by using a weight for each individual clustering
results instead of just counting their shared clusters. While the weight can
have different definitions in the other applications, this paper uses average
of Normalized Modularity (NM) of two algorithms as the weight in the
WEAC (↵̄(i,j) =

P
↵(i,j) ⇢i,j ).

matrix. These methods generate the Dendrogram and cut
it based on the number of clusters in the result [12], [8].
In recent years, many papers have used EAC as a high-
performance consensus function for combining individual
results [12], [5], [8], [4], [3]. EAC uses the number of
clusters shared by objects over the number of partitions
in which each selected pair of objects is simultaneously
presented for generating each cell of the co-association
matrix. Figure 1 illustrates the effect of the EAC equation
(c (i, j) = ↵(i,j)

�(i,j) ) on the shape of Dendrogram. Where ↵(i,j)

represents the number of clusters shared by objects with
indices (i, j); and �(i,j) is the number of partitions in which
this pair of instances (i and j) is simultaneously presented.
As a matter of fact; EAC considers that the weights of all
algorithms results are the same. Instead of counting these
indices, this paper uses following equation, which is called
Weighted EAC (WEAC), for generating the co-association
matrix.

c (i, j) =

P
↵(i,j) ⇢i,j

� (i, j)
(28)

where ↵ (i, j) and � (i, j) are same as the EAC equation;
Also, ⇢i,j is the weight of combining the instances. Although
this weight can have different definitions in the other appli-
cations, this paper uses average of Normalized Modularity of
two algorithms as follows for combining individual results:

⇢ij =
1

2
(NM i +NM j) (29)

where NM i and NM j illustrates the Normalized Mod-
ularity of the algorithms, which generate the results for
indices i and j. In other words, as a new mechanism, this
paper generates the effective results when both algorithms

q 𝛼 represents the number of clusters shared by
objects with indices i and j.

q β is the number of partitions in which this pair of
instances (i and j) is simultaneously presented.

q In fact, EAC considers that the weights of all
algorithms results are the same.
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Algorithm 2 Two Kernels Spectral Clustering (TKSC)
Input: Distance matrix A, Number of clusters l

Output: Partitional result P l, Modular result M
Method:

1. Generate similarity matrix S by using A on (17).
2. Generate diagonal matrix D by using S.
3. Generate LP by applying S and D on (18).
4. Generate LM by using S and D on (23).
5. Generate the matrix V as eigenvectors of Lp.
6. Generate U as normalized V by using (20) and (21).
7. Generate M by applying LM on (24).
8. P l = kmeans(U, l)
9. Return P

l and M

evaluating the diversity but there is no mathematical prove
that all real-world data sets have logarithmic behavior. In
community detection arena [9], [10], Modularity, which is
based on Expected Value, was proposed for solving this
problem. Recently, many papers proved that modularity [9],
[10] can estimate the diversity on graph data sets better
than entropy based methods. Unfortunately, modularity can
measure the diversity only for graph data [9]. This paper
proposes TKSC, which can generate a graph based result,
called Modular result, for any types of data sets in real-world
application. Since modularity was defined for community
detection arena, this paper introduces a redefined version of
modularity metric for general clustering problems, which
is called Normalized Modularity (NM ). It is used for
evaluating the diversity of the individual results based on
Modular result of the TKSC as follows:

NM(P l
,M) =

1

2
+

1

4z

X

ij

h
�ij �

�i�j

2z

i
⇥ (ci, cj) (25)

where P

l and M are calculated by (22) and (24), respec-
tively; z is sum of all cells in the matrix M (z =

P
M Mij);

and ci and cj are the cluster’s numbers of the i-th and j-th
instances in the Partitional result P l. Also, �i and �j show
the degree of i-th and j-th nodes in the graph of matrix M

(How many rows contains non-zero value in the columns i

or j). In addition �ij and ⇥ (ci, cj) will be calculated as
follows:

�ij =

⇢
0 if Mij = 0
1 Otherwise (26)

⇥ (ci, cj) =

⇢
1 if ci = cj

0 Otherwise (27)

This diversity evaluation is 0  NM  1. In the rest
of this section, we describe how NM will be used for
evaluating individual clustering results. Thresholding is used
for selecting the evaluated individual results in the CES.
Then co-association matrix is generated by using consensus
function on the selected results. Lastly, the final result is
generated by applying linkage methods on the co-association

Figure 1. In the traditional EAC, the ↵(i,j) represents the number of
clusters shared by objects with indices (i, j); and �(i,j) is the number
of partitions in which this pair of instances (i and j) is simultaneously
presented. This method assumes the weights of all individual clustering
results (↵(i,j)) are the same. This paper proposes Weighted EAC for
optimizing this method by using a weight for each individual clustering
results instead of just counting their shared clusters. While the weight can
have different definitions in the other applications, this paper uses average
of Normalized Modularity (NM) of two algorithms as the weight in the
WEAC (↵̄(i,j) =

P
↵(i,j) ⇢i,j ).

matrix. These methods generate the Dendrogram and cut
it based on the number of clusters in the result [12], [8].
In recent years, many papers have used EAC as a high-
performance consensus function for combining individual
results [12], [5], [8], [4], [3]. EAC uses the number of
clusters shared by objects over the number of partitions
in which each selected pair of objects is simultaneously
presented for generating each cell of the co-association
matrix. Figure 1 illustrates the effect of the EAC equation
(c (i, j) = ↵(i,j)

�(i,j) ) on the shape of Dendrogram. Where ↵(i,j)

represents the number of clusters shared by objects with
indices (i, j); and �(i,j) is the number of partitions in which
this pair of instances (i and j) is simultaneously presented.
As a matter of fact; EAC considers that the weights of all
algorithms results are the same. Instead of counting these
indices, this paper uses following equation, which is called
Weighted EAC (WEAC), for generating the co-association
matrix.

c (i, j) =

P
↵(i,j) ⇢i,j

� (i, j)
(28)

where ↵ (i, j) and � (i, j) are same as the EAC equation;
Also, ⇢i,j is the weight of combining the instances. Although
this weight can have different definitions in the other appli-
cations, this paper uses average of Normalized Modularity of
two algorithms as follows for combining individual results:

⇢ij =
1

2
(NM i +NM j) (29)

where NM i and NM j illustrates the Normalized Mod-
ularity of the algorithms, which generate the results for
indices i and j. In other words, as a new mechanism, this
paper generates the effective results when both algorithms

Algorithm 2 Two Kernels Spectral Clustering (TKSC)
Input: Distance matrix A, Number of clusters l

Output: Partitional result P l, Modular result M
Method:

1. Generate similarity matrix S by using A on (17).
2. Generate diagonal matrix D by using S.
3. Generate LP by applying S and D on (18).
4. Generate LM by using S and D on (23).
5. Generate the matrix V as eigenvectors of Lp.
6. Generate U as normalized V by using (20) and (21).
7. Generate M by applying LM on (24).
8. P l = kmeans(U, l)
9. Return P

l and M

evaluating the diversity but there is no mathematical prove
that all real-world data sets have logarithmic behavior. In
community detection arena [9], [10], Modularity, which is
based on Expected Value, was proposed for solving this
problem. Recently, many papers proved that modularity [9],
[10] can estimate the diversity on graph data sets better
than entropy based methods. Unfortunately, modularity can
measure the diversity only for graph data [9]. This paper
proposes TKSC, which can generate a graph based result,
called Modular result, for any types of data sets in real-world
application. Since modularity was defined for community
detection arena, this paper introduces a redefined version of
modularity metric for general clustering problems, which
is called Normalized Modularity (NM ). It is used for
evaluating the diversity of the individual results based on
Modular result of the TKSC as follows:
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tively; z is sum of all cells in the matrix M (z =
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M Mij);

and ci and cj are the cluster’s numbers of the i-th and j-th
instances in the Partitional result P l. Also, �i and �j show
the degree of i-th and j-th nodes in the graph of matrix M

(How many rows contains non-zero value in the columns i

or j). In addition �ij and ⇥ (ci, cj) will be calculated as
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1 Otherwise (26)
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0 Otherwise (27)

This diversity evaluation is 0  NM  1. In the rest
of this section, we describe how NM will be used for
evaluating individual clustering results. Thresholding is used
for selecting the evaluated individual results in the CES.
Then co-association matrix is generated by using consensus
function on the selected results. Lastly, the final result is
generated by applying linkage methods on the co-association

Figure 1. In the traditional EAC, the ↵(i,j) represents the number of
clusters shared by objects with indices (i, j); and �(i,j) is the number
of partitions in which this pair of instances (i and j) is simultaneously
presented. This method assumes the weights of all individual clustering
results (↵(i,j)) are the same. This paper proposes Weighted EAC for
optimizing this method by using a weight for each individual clustering
results instead of just counting their shared clusters. While the weight can
have different definitions in the other applications, this paper uses average
of Normalized Modularity (NM) of two algorithms as the weight in the
WEAC (↵̄(i,j) =

P
↵(i,j) ⇢i,j ).

matrix. These methods generate the Dendrogram and cut
it based on the number of clusters in the result [12], [8].
In recent years, many papers have used EAC as a high-
performance consensus function for combining individual
results [12], [5], [8], [4], [3]. EAC uses the number of
clusters shared by objects over the number of partitions
in which each selected pair of objects is simultaneously
presented for generating each cell of the co-association
matrix. Figure 1 illustrates the effect of the EAC equation
(c (i, j) = ↵(i,j)

�(i,j) ) on the shape of Dendrogram. Where ↵(i,j)

represents the number of clusters shared by objects with
indices (i, j); and �(i,j) is the number of partitions in which
this pair of instances (i and j) is simultaneously presented.
As a matter of fact; EAC considers that the weights of all
algorithms results are the same. Instead of counting these
indices, this paper uses following equation, which is called
Weighted EAC (WEAC), for generating the co-association
matrix.

c (i, j) =

P
↵(i,j) ⇢i,j

� (i, j)
(28)

where ↵ (i, j) and � (i, j) are same as the EAC equation;
Also, ⇢i,j is the weight of combining the instances. Although
this weight can have different definitions in the other appli-
cations, this paper uses average of Normalized Modularity of
two algorithms as follows for combining individual results:

⇢ij =
1

2
(NM i +NM j) (29)

where NM i and NM j illustrates the Normalized Mod-
ularity of the algorithms, which generate the results for
indices i and j. In other words, as a new mechanism, this
paper generates the effective results when both algorithms

q WEAC:

q Although the weight can have different definitions in the other applications, this
paper uses average of Normalized Modularity of two algorithms as follows for
combining individual results:

q Final co-association matrix:
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q Data Set: we employ 26 standard data
Ø Image based data set

ü Alzheimer's Disease data set (MRI and PET images from human
brain)

Ø USPS: a handwriting data set
Ø Document based data set

ü 20 Newsgroups, Reuters-21578
Ø More than 20 data set mostly from UCI data repository

q Algorithms:
Ø Individual Clustering methods:

q Spectral clustering (Ng et al., 2001), MLE (Chen el al., 2014)
Ø Cluster Ensemble (Selection) methods:

q APMM (Alizadeh et al., 2014), WOCCE (Alizadeh et al., 2015), SMI
(Romano et al., 2014), BGCM (Gao et al., 2013)
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Figure 2. The effect of noisy data sets on the performance.
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Figure 3. The effect of missed-values on the performance.

B. Performance analysis

In this section the performance (accuracy metric [8]) of
proposed method will be analyzed. In other words, the
final clustering performance was evaluated by re-labeling
between obtained clusters and the ground truth labels and
then counting the percentage of correctly classified samples
[8]. The results of the proposed method are compared
with individual algorithms Spectral clustering[17] and MLE
[15], as well as APMM [5], WOCCE [8], SMI [13], and
BGCM [16] which are state-of-the-art cluster ensemble
(selection) methods. The main reason for comparing the
proposed method with Spectral clustering is to show the
effect of TKSC framework on the performance of the final
results. Furthermore, as a new alternative in the graph
based clustering methods, the empirical results of WSCE
are compared with the MLE and BGCM methods. This

paper uses the unsupervised version of BGCM method (with
the null set of supervision information). For representing
the effect of Normalized Modularity on the performance
of the final results, it compares with three state-of-the-
art metrics in diversity evaluation (A3, APMM and SMI),
which are based on Shannons entropy. This paper doesn’t
use optional feature selection in this section (d = 0). The
experimental results are given in Table II. In this table, the
best result which is achieved for each data set is highlighted
in bold. As depicted in this table, although individual cluster-
ing algorithms (Spectral and MLE) have shown acceptable
performance in some data sets, they cannot recognize true
patterns in all of them. As mentioned earlier in this paper,
in order to solve the clustering problem, each individual
algorithm considers a special perspective of a data set which
is based on its objective function. The achieved results
of individual clustering algorithms, which are depicted in

q The effect noisy data on the performance of the proposed method
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B. Performance analysis

In this section the performance (accuracy metric [8]) of
proposed method will be analyzed. In other words, the
final clustering performance was evaluated by re-labeling
between obtained clusters and the ground truth labels and
then counting the percentage of correctly classified samples
[8]. The results of the proposed method are compared
with individual algorithms Spectral clustering[17] and MLE
[15], as well as APMM [5], WOCCE [8], SMI [13], and
BGCM [16] which are state-of-the-art cluster ensemble
(selection) methods. The main reason for comparing the
proposed method with Spectral clustering is to show the
effect of TKSC framework on the performance of the final
results. Furthermore, as a new alternative in the graph
based clustering methods, the empirical results of WSCE
are compared with the MLE and BGCM methods. This

paper uses the unsupervised version of BGCM method (with
the null set of supervision information). For representing
the effect of Normalized Modularity on the performance
of the final results, it compares with three state-of-the-
art metrics in diversity evaluation (A3, APMM and SMI),
which are based on Shannons entropy. This paper doesn’t
use optional feature selection in this section (d = 0). The
experimental results are given in Table II. In this table, the
best result which is achieved for each data set is highlighted
in bold. As depicted in this table, although individual cluster-
ing algorithms (Spectral and MLE) have shown acceptable
performance in some data sets, they cannot recognize true
patterns in all of them. As mentioned earlier in this paper,
in order to solve the clustering problem, each individual
algorithm considers a special perspective of a data set which
is based on its objective function. The achieved results
of individual clustering algorithms, which are depicted in

q The effect missed-values on the performance of the proposed method
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Summary

q There are two challenges in Cluster Ensemble Selection:
§ Proposing a robust consensus metric(s) for diversity evaluation.
§ Estimating optimum parameters in the thresholding procedure for selecting the

evaluated results.

q This paper introduces a novel solution for solving mentioned challenges:
§ Mapping function and Optional feature selection (preparing raw data)
§ Two Kernel Spectral Clustering (TKSC) algorithm (generating individual results)
§ Normalized Modularity (estimating diversity)
§ Weighted EvidenceAccumulation Clustering (generating final result)

q An extensive experimental study is performed by comparing with individual
clustering methods as well as cluster ensemble (selection) methods on a large
number of data sets.

q Results clearly show the superiority of our approach on both normal data sets
and those with noise or missing values.

q In the future, we will develop a new version of Normalized Modularity for
estimating the diversity of Partitional results, directly.
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