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q Modalities of measure:
ü Single-unit recording
ü Electrocorticography (ECoG)
ü electroencephalography (EEG)
ü Magnetoencephalographic (MEG)
ü functional Magnetic Resonance Imaging (fMRI)

q The spatial resolution of fMRI allowed investigators to ask what
information is represented in a region instead of asking what a region’s
function is?

q Our method contributions are:
ü Automatically detecting the Region of Interests (ROIs)
ü A new feature representation for removing noise and sparsity
ü A customized classification algorithm for brain decoding problems
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• Tracking the intensity over time gives us a time series. 
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Multivariate Pattern Classification (MVP)
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General framework of study
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Data Processing Pipeline 
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General Linear Model for Each Session
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for the two subjects are usually di↵erent. Therefore, MVPA techniques use the
correlation between di↵erent voxels as the pattern of the brain response [3,4]. As
depicted in Figure 1, each fMRI experiment includes a set of sessions (time series
of 3D images), which can be captured by di↵erent subjects or just repeating the
imaging procedure with a unique subject. Technically, each session can be par-
titioned into a set of visual stimuli categories. Indeed, an independent category
denotes a set of homogeneous conditions, which are generated by using the same
type of photos as the visual stimuli. For instance, if a subject watches 6 photos
of cats and 5 photos of houses during a unique session, this 4D image includes 2
di↵erent categories and 11 conditions.

3.1 Feature Extraction

Consider F 2 RN⇥X⇥Y⇥Z = {number of scans (N)⇥ 3D images} for each session
of the experiment. F can be written as a general linear model: F = D�+", where
D = {number of scans (N) ⇥ P categories (regressors)} denotes the design ma-
trix; " is the noise (error of estimation); and also � = {number of categories (P )⇥
3D images} denotes the set of correlations between voxels for the categories of
the session. Design matrix can be calculated by convolution (D(t) = (S ⇤H)(t))
of onsets (or time series S(t)) and the Hemodynamic Response Function (HRF)
[4]. This paper uses Generalized Least Squares (GLS) approach for estimating

optimized solution (�̂ = (D|V �1D)
�1

D|V �1F ), where V is the covariance ma-
trix of the noise (V ar(") = V �2 6= I�2) [4,2]. Now, this paper defines the positive
correlation � = �̂ > 0 = {�̂1 > 0, �̂2 > 0, . . . , �̂

P

> 0} = {�1,�2, . . . ,�P

} for all
categories as the active regions, where �̂ denotes the estimated correlation, �̂
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and �
p

are the correlation and positive correlation for the p-th category, respec-
tively. Moreover, the data F is partitioned based on the conditions of the design
matrix as follows:
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, ĉ21, ĉ
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Example of Design Matrix
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Example of Design Matrix (cont.)
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Feature Extraction
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2
2, . . . , ĉ
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where � denotes Hadamard product; and (Cp
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-th condition of p-th category; and also, (�
p

)[x,y,z] is the [x, y, z]-th voxel

of the correlation matrix (� values) of the p-th category.
Since mapping 4D fMRI images to standard space decreases the performance

of final results, most of the previous studies use the original images instead
of the standard version. By considering 3D image ⇣p

qr
for each condition, this

paper enables to map brain activities to a standard space. This mapping can
provide normalized view for combing homogeneous datasets. For registering ⇣p

qr

to standard space, this paper utilizes the FLIRT algorithm [10], which minimizes
the following cost function:
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3.2 Classification Algorithm
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). As a new branch of AdaBoost algorithm, Algorithm 1 employs G
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for training binary classification. Then, G
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is utilized for estimating the perfor-
mance of the classifier. As mentioned before, training binary classification for
fMRI analysis is mostly imbalance, especially by using a one-versus-all strategy.
As a result, the number of samples in one of these binary classes is smaller than
the other class. This paper also exploits this concept. Indeed, Algorithm 1 firstly
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lus category evoked a distinct pattern of re-
sponse in cortex that responded maximally to
other categories. For each comparison be-
tween patterns of response evoked by two
categories, all of the voxels that responded
maximally to either category in either half of
the data were excluded from the calculation
of correlations (22). The specificity of the
pattern of response to each category was
barely diminished by thus restricting the anal-
ysis (Fig. 4), with a mean accuracy of 94%
for identifying the category being viewed
(Table 1) (23).
Patterns of response within cortical

regions that respond maximally to one
category. These results indicate that the
category specificity of responses in ventral
temporal cortex is not restricted solely to
regions that respond maximally to certain
stimuli, thus raising the question of whether
the representation of faces and objects in this
cortex has a topographic organization that
exists with a finer spatial resolution than that
defined by such regions. To investigate
whether the category specificity of response
exists at this finer spatial resolution, we ex-
amined the patterns of response within re-
gions that responded maximally to a single
category or a small set of categories (22)
(Table 1). Within only the cortex that re-
sponded maximally to houses, the pattern of
response correctly identified the category be-
ing viewed with 93% accuracy. Within only
the cortex that responded maximally to small,
man-made objects, the pattern of response
identified the category being viewed with
94% accuracy. Even within the much smaller
region that responded maximally to faces, the
pattern of response identified the category
being viewed with 83% accuracy, and accu-
racies were significantly better than chance
for all categories except shoes. Similarly, the
pattern of response within the region that
responded maximally to cats identified the
category being viewed with 85% accuracy,
with accuracies that were better than chance
for all categories except bottles.

These results demonstrate that the pattern
of response in ventral temporal cortex carries
information about the type of object being
viewed, even in cortex that responds maxi-
mally to other categories, but the nature of
this information is unknown. To examine
whether this information concerns only low-
level features of gray-scale photographs that
are shared by a category, such as mean lumi-
nance, mean contrast, and spatial frequencies,
we reanalyzed data from a previous study in
which subjects viewed photographs and line
drawings of three categories (faces, house,
and chairs) (13). We examined whether the
pattern of response to a category of line
drawings can be identified on the basis of its
similarity to responses to photographs of the
same and different categories and, converse-
ly, whether the pattern of response to a cate-
gory of photographs can be identified on the

basis of its similarity to responses to line
drawings. The results of this reanalysis
showed that similarities between patterns of
response to photographs and line drawings of
the same category correctly identified the
category being viewed, even when the anal-
ysis was restricted to cortex that did not
respond maximally to either of the categories
being discriminated (96% correct pairwise
discriminations) [for detailed results, see sup-
plemental material (24 )]. This result shows
that patterns of nonmaximal responses do not
represent low-level features that are specific
to the type of stimuli, such as photographs,
but, rather, appear to reflect information that
is more definitive of object category.
Discussion. These findings demonstrate

distinct patterns of response in ventral tem-
poral cortex for multiple categories of ob-
jects, including different types of small man-

Fig. 1. Schematic diagram illustrating the loca-
tions of the fusiform face area (FFA), which also
has been implicated in expert visual recogni-
tion, and the parahippocampal place area (PPA)
on the ventral surface of the right temporal
lobe. In most brains, these areas are bilateral.

Fig. 2. Examples of stim-
uli. Subjects performed a
one-back repetition de-
tection task in which rep-
etitions of meaningful
pictures were different
views of the same face or
object.

R E S E A R C H A R T I C L E S

28 SEPTEMBER 2001 VOL 293 SCIENCE www.sciencemag.org2426

 o
n 

Ap
ril

 2
0,

 2
01

0 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 

Small Class

Large
Class



Ensemble Approach

18/30
Decoding visual stimuli in human brain by using Anatomical Pattern Analysis on fMRI images

q Each iteration contains all samples of small class, randomized selected samples 
from large class, and the samples that made errors in the pervious iteration.

q The number of randomized selected samples from large class is equal to the 

number of samples in the small class.

q Randomize sampling is without replacement.
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q Each iteration contains all samples of small class, randomized selected samples 
from large class, and the samples that made errors in the pervious iteration.

q The number of randomized selected samples from large class is equal to the 

number of samples in the small class.

q Randomize sampling is without replacement.
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Algorithm 1 The proposed binary classification algorithm

Input: Data set Gtr : is train set, Itr : denotes real class labels of the train sets,
Output: Classifier E,
Method:

1. Partition Gtr = {GS
tr, G

L
tr}, where G

S
tr, G

L
tr are Small and Large classes.

2. Calculate J = Int(| GS
tr | / | GL

tr |) based on number of elements in classes.
3. Randomly sample the G

L
tr = {GL

tr(1), . . . , G
L
tr(J)}.

4. By considering Ḡ1 = Ī1 = ;, generating j = 1, . . . , J + 1 classifiers:
5. Construct Gj = {GS

tr, G
L
tr(j), Ḡj} and Ij = {IStr, ILtr(j), Īj}

6. Calculate Wj = {wj}|Gj | =

(
1 for instances of GS

tr or Ḡj

1� | corr(GS
tr, G

L
tr) | for instances of GL

tr(j)

7.Train ✓j = Classifier(Gj , Ij ,Wj).
8. Construct Ḡj+1, Īj+1 as the set of instances cannot truly trained in ✓j .
9. If (j  J + 1): go to line 5; Else: return ⇥p = {✓1, . . . , ✓J+1} as final classifier.

is the train weight (penalty values), which is considered for the large class. Fur-
ther, Classifier() denotes any kind of weighted classification algorithm. This
paper uses a simple classical decision tree as the individual classification algo-
rithm (✓

j

) [9].

Generally, there are two techniques for applying multi-class classification. The
first approach directly creates the classification model such as multi-class support
vector machine [5] or neural network [1]. In contrast, (indirect) decomposition
design uses an array of binary classifiers for solving the multi-class problems. As
one of the classical indirect methods, Error-Correcting Output Codes (ECOC)
includes three components, i.e. base algorithm, encoding and decoding proce-
dures [8]. As the based algorithm in the ECOC, this paper employs Algorithm
1 for generating the binary classifiers (⇥

p

). Further, it uses a one-versus-all en-
coding strategy for training the ECOC method, where an independent category
of the visual stimuli is compared with the rest of categories (see Figure 1.e).
Indeed, the number of classifiers in this strategy is exactly equal to the number
of categories. This method also assigns the brain response to the category with
closest hamming distance in decoding stage.

4 Experiments

4.1 Extracted Features Analysis

This paper employs two datasets, shared by openfmri.org, for running empiri-
cal studies. As the first dataset, ‘Visual Object Recognition’ (DS105) includes 71
sessions (6 subjects). It also contains 8 categories of visual stimuli, i.e. gray-scale
images of faces, houses, cats, bottles, scissors, shoes, chairs, and scrambled (non-
sense) photos. This dataset is analyzed in high-level visual stimuli as the binary



19/30
Decoding visual stimuli in human brain by using Anatomical Pattern Analysis on fMRI images

6

Algorithm 1 The proposed binary classification algorithm

Input: Data set Gtr : is train set, Itr : denotes real class labels of the train sets,
Output: Classifier E,
Method:

1. Partition Gtr = {GS
tr, G

L
tr}, where G

S
tr, G

L
tr are Small and Large classes.

2. Calculate J = Int(| GS
tr | / | GL

tr |) based on number of elements in classes.
3. Randomly sample the G

L
tr = {GL

tr(1), . . . , G
L
tr(J)}.
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tr(j), Ḡj} and Ij = {IStr, ILtr(j), Īj}
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Input: Data set Gtr : is train set, Itr : denotes real class labels of the train sets,
Output: Classifier E,
Method:

1. Partition Gtr = {GS
tr, G

L
tr}, where G

S
tr, G

L
tr are Small and Large classes.

2. Calculate J = Int(| GS
tr | / | GL

tr |) based on number of elements in classes.
3. Randomly sample the G

L
tr = {GL

tr(1), . . . , G
L
tr(J)}.

4. By considering Ḡ1 = Ī1 = ;, generating j = 1, . . . , J + 1 classifiers:
5. Construct Gj = {GS

tr, G
L
tr(j), Ḡj} and Ij = {IStr, ILtr(j), Īj}

6. Calculate Wj = {wj}|Gj | =

(
1 for instances of GS

tr or Ḡj

1� | corr(GS
tr, G

L
tr) | for instances of GL

tr(j)

7.Train ✓j = Classifier(Gj , Ij ,Wj).
8. Construct Ḡj+1, Īj+1 as the set of instances cannot truly trained in ✓j .
9. If (j  J + 1): go to line 5; Else: return ⇥p = {✓1, . . . , ✓J+1} as final classifier.

is the train weight (penalty values), which is considered for the large class. Fur-
ther, Classifier() denotes any kind of weighted classification algorithm. This
paper uses a simple classical decision tree as the individual classification algo-
rithm (✓

j

) [9].

Generally, there are two techniques for applying multi-class classification. The
first approach directly creates the classification model such as multi-class support
vector machine [5] or neural network [1]. In contrast, (indirect) decomposition
design uses an array of binary classifiers for solving the multi-class problems. As
one of the classical indirect methods, Error-Correcting Output Codes (ECOC)
includes three components, i.e. base algorithm, encoding and decoding proce-
dures [8]. As the based algorithm in the ECOC, this paper employs Algorithm
1 for generating the binary classifiers (⇥

p

). Further, it uses a one-versus-all en-
coding strategy for training the ECOC method, where an independent category
of the visual stimuli is compared with the rest of categories (see Figure 1.e).
Indeed, the number of classifiers in this strategy is exactly equal to the number
of categories. This method also assigns the brain response to the category with
closest hamming distance in decoding stage.

4 Experiments

4.1 Extracted Features Analysis

This paper employs two datasets, shared by openfmri.org, for running empiri-
cal studies. As the first dataset, ‘Visual Object Recognition’ (DS105) includes 71
sessions (6 subjects). It also contains 8 categories of visual stimuli, i.e. gray-scale
images of faces, houses, cats, bottles, scissors, shoes, chairs, and scrambled (non-
sense) photos. This dataset is analyzed in high-level visual stimuli as the binary
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q This paper utilizes Error-Correcting Output Codes (ECOC)

method for applying multi-class classification.

q Our method uses a one-versus-all encoding strategy for

training the ECOC method, where an independent category
of the visual stimuli is compared with the rest of categories.

q Indeed, the number of classifiers in this strategy is exactly

equal to the number of categories.

q This method also assigns the brain response to the

category with closest hamming distance in decoding stage.
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Title ID # of 
Subjects

# of 
Samples

# of 
Stimuli

Visual Object Recognition DS105 6 568 8

Word and Object Processing 
DS107 49 1568 4

ØThis paper employs two datasets, shared by openfmri.org, for 
running empirical studies. 
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Fig. 2: Extracted features based on di↵erent stimuli, i.e. (a) word, (b) object,
and (c) scramble. (d) The e↵ect of di↵erent objective functions in (4) on the
error of registration.

(a) (b)

(c) (d)

Fig. 3: The correlation matrices: (a) raw voxels and (b) extracted features of the
DS105 dataset, (c) raw voxels and (d) extracted features of the DS107 dataset.

q Woods function (W)
q Correlation Ratio (CR)

q Joint Entropy (JE)
q Mutual Information (MI)

q Normalized MI (NMI)



Correlation Analysis

25/30
Decoding visual stimuli in human brain by using Anatomical Pattern Analysis on fMRI images

8

Fig. 2: Extracted features based on di↵erent stimuli, i.e. (a) word, (b) object,
and (c) scramble. (d) The e↵ect of di↵erent objective functions in (4) on the
error of registration.

(a) (b)

(c) (d)

Fig. 3: The correlation matrices: (a) raw voxels and (b) extracted features of the
DS105 dataset, (c) raw voxels and (d) extracted features of the DS107 dataset.
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Table 1: Accuracy of binary predictors
Data Sets Cox & Savoy McMenamin et al. Mohr el al. Osher et al. Binary-APA
DS105-Objects 71.65±0.97 83.06±0.36 85.29±0.49 90.82±1.23 98.37±0.16
DS107-Words 69.89±1.02 89.62±0.52 81.14±0.91 94.21±0.83 97.67±0.12
DS107-Consonants 67.84±0.82 87.82±0.37 79.69±0.69 95.54±0.99 98.73±0.06
DS107-Objects 65.32±1.67 84.22±0.44 75.32±0.41 95.62±0.83 95.06±0.11
DS107-Scramble 67.96±0.87 86.19±0.26 78.45±0.62 93.1±0.78 96.71±0.18

Table 2: Area Under the ROC Curve (AUC) of binary predictors
Data Sets Cox & Savoy McMenamin et al. Mohr el al. Osher et al. Binary-APA
DS105-Objects 68.37±1.01 82.22±0.42 80.91±0.21 88.54±0.71 96.25±0.92
DS107-Words 67.76±0.91 86.35±0.39 78.23±0.57 93.61±0.62 97.02±0.2
DS107-Consonants 63.84±1.45 85.63±0.61 77.41±0.92 94.54±0.31 96.92±0.14
DS107-Objects 63.17±0.59 81.54±0.92 73.92±0.28 94.23±0.94 95.17±0.03
DS107-Scramble 66.73±0.92 85.79±0.42 76.14±0.47 92.23±0.38 96.08±0.1

Table 3: Accuracy of multi-class predictors
Data Sets Cox & Savoy McMenamin et al. Mohr el al. Osher et al. Multi-APA
DS105 (P=8) 18.03±4.07 38.34±3.21 29.14±2.25 50.61±4.83 57.93±2.1
DS107 (P=4) 38.01±2.56 71.55±2.79 64.71±3.14 89.69±2.32 94.21±2.41
ALL (P=4) 32.93±2.29 68.35±3.07 63.16±4 80.36±3.04 95.67±1.25

8 di↵erent categories (P=8 classes) and ‘DS107’ contains 4 categories of the vi-
sual stimuli. As another 4 categories dataset, ‘ALL’ is generated by considering
all visual stimuli in the dataset DS105 except scrambled photos as object cate-
gory and combining them with the dataset DS107. In this dataset, the accuracy
of the proposed method is improved by combining two datasets, whereas, the
performances of other methods are significantly decreased. As mentioned before,
it is the standard space registration problem in the 4D images. In addition, our
framework employs the extracted features from the brain structural regions in-
stead of using all or a subgroup of voxels, which can increase the performance
of the predictive models by decreasing noise and sparsity.

5 Conclusion

This paper proposes Anatomical Pattern Analysis (APA) framework for decod-
ing visual stimuli in the human brain. This framework uses an anatomical feature
extraction method, which provides a normalized representation for combining
homogeneous datasets. Further, a new binary imbalance AdaBoost algorithm
is introduced. It can increase the performance of prediction by exploiting a su-
pervised random sampling and the correlation between classes. In addition, this
algorithm is utilized in an Error-Correcting Output Codes (ECOC) method for
multi-class prediction of the brain responses. Empirical studies on 4 visual cate-
gories clearly show the superiority of our proposed method in comparison with
the voxel-based approaches. In future, we plan to apply the proposed method to
di↵erent brain tasks such as low-level visual stimuli, emotion and etc.
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DS107-Objects 65.32±1.67 84.22±0.44 75.32±0.41 95.62±0.83 95.06±0.11
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DS107-Objects 63.17±0.59 81.54±0.92 73.92±0.28 94.23±0.94 95.17±0.03
DS107-Scramble 66.73±0.92 85.79±0.42 76.14±0.47 92.23±0.38 96.08±0.1

Table 3: Accuracy of multi-class predictors
Data Sets Cox & Savoy McMenamin et al. Mohr el al. Osher et al. Multi-APA
DS105 (P=8) 18.03±4.07 38.34±3.21 29.14±2.25 50.61±4.83 57.93±2.1
DS107 (P=4) 38.01±2.56 71.55±2.79 64.71±3.14 89.69±2.32 94.21±2.41
ALL (P=4) 32.93±2.29 68.35±3.07 63.16±4 80.36±3.04 95.67±1.25

8 di↵erent categories (P=8 classes) and ‘DS107’ contains 4 categories of the vi-
sual stimuli. As another 4 categories dataset, ‘ALL’ is generated by considering
all visual stimuli in the dataset DS105 except scrambled photos as object cate-
gory and combining them with the dataset DS107. In this dataset, the accuracy
of the proposed method is improved by combining two datasets, whereas, the
performances of other methods are significantly decreased. As mentioned before,
it is the standard space registration problem in the 4D images. In addition, our
framework employs the extracted features from the brain structural regions in-
stead of using all or a subgroup of voxels, which can increase the performance
of the predictive models by decreasing noise and sparsity.

5 Conclusion

This paper proposes Anatomical Pattern Analysis (APA) framework for decod-
ing visual stimuli in the human brain. This framework uses an anatomical feature
extraction method, which provides a normalized representation for combining
homogeneous datasets. Further, a new binary imbalance AdaBoost algorithm
is introduced. It can increase the performance of prediction by exploiting a su-
pervised random sampling and the correlation between classes. In addition, this
algorithm is utilized in an Error-Correcting Output Codes (ECOC) method for
multi-class prediction of the brain responses. Empirical studies on 4 visual cate-
gories clearly show the superiority of our proposed method in comparison with
the voxel-based approaches. In future, we plan to apply the proposed method to
di↵erent brain tasks such as low-level visual stimuli, emotion and etc.
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q This paper proposes Anatomical Pattern Analysis (APA)

framework for decoding visual stimuli in the human brain.

ü A new feature extraction method.

ü A customized classification algorithm.

q In future, we plan to apply the proposed method to different

brain tasks such as low-level visual stimuli, emotion and

etc.

qM. Yousefnezhad, D. Zhang, Local Discriminant

Hyperalignment for multi-subject fMRI data alignment. 34th

AAAI Conference on Artificial Intelligence (AAAI-17), San

Francisco, California, USA, February/4-9, 2017.
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