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WoCE: a framework for clustering ensemble by
exploiting the wisdom of Crowds theory

Muhammad Yousefnezhad, Sheng-Jun Huang, Daoqiang Zhang

Abstract—The Wisdom of Crowds (WOC), as a theory in
the social science, gets a new paradigm in computer science.
The WOC theory explains that the aggregate decision made by
a group is often better than those of its individual members
if specific conditions are satisfied. This paper presents a novel
framework for unsupervised and semi-supervised cluster ensem-
ble by exploiting the WOC theory. We employ four conditions in
the WOC theory, i.e., diversity, independency, decentralization
and aggregation, to guide both the constructing of individual
clustering results and the final combination for clustering ensem-
ble. Firstly, independency criterion, as a novel mapping system
on the raw data set, removes the correlation between features
on our proposed method. Then, decentralization as a novel
mechanism generates high quality individual clustering results.
Next, uniformity as a new diversity metric evaluates the gener-
ated clustering results. Further, weighted evidence accumulation
clustering method is proposed for the final aggregation without
using thresholding procedure. Experimental study on varied data
sets demonstrates that the proposed approach achieves superior
performance to state-of-the-art methods.

Index Terms—semi-supervised clustering; cluster ensemble;
pairwise constraints; the wisdom of crowds.

I. INTRODUCTION

CLUSTERING, the art of discovering meaningful patterns
in the unlabeled data sets, is one of the main tasks in

machine learning. Semi-supervised clustering is a branch of
clustering methods that uses prior supervision information,
such as labeled data, known data associations, or pairwise
constraints, to aid the clustering process. This paper focuses on
pairwise constraints, i.e. pairs of instances known as belonging
to the same cluster (must-link constraints) or different clusters
(cannot-link constraints). Pairwise constraints arise naturally in
many real tasks and have been widely used in semi-supervised
clustering. There is a wide range of issues in the clustering
methods. For instance, individual clustering algorithms pro-
vide different accuracies in a complex data set because they
generate the clustering results by optimizing a local or global
function instead of natural relations between data points [1],
[2], [3], [4]. As another example, pairwise constraints often
result in highly unstable clustering performance, whereas they
have the potential to improve clustering accuracy in practice
[5], [6].
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As a novel solution, cluster ensemble was proposed for
achieving a robust and stable final result by combining the
different individual clustering results [1]. Cluster Ensemble
Selection (CES) is a new approach which combines a subgroup
of individual clustering results. It uses a consensus metric(s)
for evaluating and selecting the ensemble committee in or-
der to improve the accuracy of final results [7]. Generally,
CES contains four components; i.e. generation, evaluation,
selection, and combination. Firstly, individual clustering re-
sults are generated by using different kinds of clustering
algorithms or repeating some algorithms, which can generate
random results in each runtime such as the k-means. Next, a
consensus metric(s) such as Normalized Mutual Information
(NMI) is employed to evaluate the generated results. After that,
the evaluated results are selected by thresholding procedure.
Lastly, the final clustering result is obtained by an aggregation
mechanism [7], [8], [9], [10], [11].

There are three challenges in the CES arena; i.e. strategy
of generation, metric(s) of evaluation, thresholding procedure.
As the first challenge, the strategy of generating the individual
clustering results can dramatically affect the performance of
CES [12], [13], [14], [15], [16]. There are generally two
paradigms, i.e. some of these studies [7], [17], [9], [13]
separately run each component of the CES (generate all
individual results, then evaluate them, etc.) whereas the rest
of studies [18], [12] employed feedback mechanism, which
gradually runs each component of the CES (generating the
first individual result, then evaluating it, etc.). On the one
hand, feedback mechanism uses evaluated the results at each
step for improving the quality of the generated results in the
next steps. Therefore, it can usually provide better performance
in comparison with the first paradigm [18], [12]. On the
other hand, it may not be compatible with many of classical
structures/metrics in the ensemble learning. Evaluation is the
next challenge. NMI is one of the most prevalent diversity
metrics that is used in the CES because 1) NMI is not sensitive
to the cluster’s indices [18] 2) it can be easily implemented [8],
[7] 3) it has better time complexity in comparison with other
classic methods [19], [7], [17], [9]. The main disadvantage
of NMI is that the symmetric problem. Indeed, it cannot
provide an efficient evaluation while the numbers of instances
in distinct clusters are highly different. For instance, consider a
clustering analysis for partitioning emails to normal or spam
groups, where the number of instances in the normal group
is significantly greater than the number of data points in
the spams group. Alizadeh et al. [9], [17], [18] proved that
the NMI evaluates the similarity between these two clusters
equal to 1, while the real similarity is near to zero. This



IEEE TRANSACTION ON CYBERNETICS 2

issue can rapidly decrease the performance of the NMI-based
CES methods in the big data analysis [17], [9], [18], [12].
Recently, some of the studies proposed a modified version of
the NMI such as APMM1 [9] and MAX [17] for solving this
problem. Their proposed methods were utilized for evaluat-
ing diversity between a cluster and a partition. Since using
mentioned methods for evaluating two partitions increases the
time complexity, it is critical to propose a new metric, which
directly can evaluate diversity between two partitions. The next
challenge in the CES is thresholding. In practice, it is so hard
to find optimum values of thresholds; and the performance of
the CES significantly depends on the threshold values [12].

Most of the ensemble methods (especially in the CES)
employs the (majority) voting systems [7], [8], [18], [12], such
as Boosting and Error-Correcting Output Codes (ECOC) in
supervised learning [20] or Evidence Accumulation Clustering
(EAC) method in unsupervised learning [19]. Indeed, CES
framework just provides a voting system for selecting the
robust and stable individual results. Voting systems are firstly
defined in the term of social science, where it is used for
providing democratic societies, fair trials (in the courts), etc.
[21]. There is a wide range of theories in social science,
which can provide an environment for applying an effective
voting system. They can be used to inspire new algorithms in
machine learning. The Wisdom of Crowds (WOC) is one of
these theories, which explain a robust approach for generating
accurate results in a voting system. It simply claims that
decisions made by aggregating the information of groups are
better than those made by any single group member if the
four specific conditions of this theory are satisfied; i.e. di-
versity, independency, decentralization, and aggregation [21],
[18]. Indeed, we can find many modern concepts in different
sciences, which used WOC as a fundamental resource, e.g.
Delphi method in management [21], crowdsourcing/funding in
the market [21], crowd computing [22] in computer networks,
etc. In computer science, this theory was used for optimizing
resources in wireless sensor networks [22]. Further, there is a
wide range of studies in supervised learning [23], [24], [25],
[26], [27], [28] and unsupervised learning [12], [18], which
use the WOC theory for proposing new approaches. These
studies validated that the WOC theory usually leads to better
performance and higher stability.

For solving the three mentioned problems in CES, this
paper shows that the WOC theory well matches the target
of cluster ensemble, and thus its four conditions can be
employed to guide the designing of individual clusterings
as well as the final ensemble. Based on this observation,
we propose a robust framework, which is called Wisdom
of crowds Cluster Ensemble (WoCE), for both unsupervised
and semi-supervised cluster ensemble. Our contribution in this
paper can be summarized as follows:
• Firstly, a new mapping between the WOC observations

and the CES problems. Furthermore, a general framework
is proposed based on WOC theory for generating diverse
individual results and using the feedback mechanism to
select individual clusterings with high independency and
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quality. This framework is the first WOC-based approach
for semi-supervised clustering.

• After that, this paper introduces a novel technique in the
term of mathematical independent random variables for
mapping the data to new dimensions based on the natural
correlation of raw data, which can satisfy the indepen-
dency criterion in the WOC. This mapping can generate
independent features, which increase the performance of
individual clustering algorithms.

• Then, to satisfy the decentralization criterion in WOC,
this study uses different numbers of clusters in the
different kinds of clustering algorithms, which can effec-
tively generate high quality individual clustering results.
Moreover, this paper develops a new method for selecting
features based on supervision information in the semi-
supervised approach.

• Next, to satisfy the diversity criterion in the WOC, this
study proposes a new diversity metric called uniformity,
which is based on the APMM criterion, for evaluating
the diversity of two partition, directly [9].

• Lastly, to satisfy the aggregation mechanism in WOC,
this paper proposed Weighted Evidence Accumulation
Clustering (WEAC) to obtain the final clustering with
a weighted combination of all individual results. While
the weight of each individual result in WEAC can be
estimated with different metrics, the uniformity was used
in this paper.

The rest of this paper is organized as follows: In Section
II, this study first briefly reviews some related works. Then
it introduces the proposed WoCE framework in Section III.
Experimental results are presented in Section IV; and finally
this paper presents conclusion and point out some future works
in Section V.

II. RELATED WORKS

A. The Wisdom of Crowds

Francis Galton was a British scientist, who introduced the
correlation concept in statistics. In 1906, he went to annual
West of England Fat Stock and Poultry Exhibition where
the local farmers and townspeople gathered to estimate and
gamble the quality of each other’s cattle, sheep, pigs, etc.
Each animal was shown to the crowd; and people wrote their
estimations on the tickets. Final goal of this gambling was
estimating the closest weight for each animal in comparison
with the real weight of that animal. Galton considered that
the average of tickets’ value for each animal must be a value
of significant distance in comparison with the exact answer
because a few people (local farmers or experts) just knew the
right answer. He borrowed all 787 tickets, which show the
estimations of an ox’s weight. While the weight of that ox was
1198 pounds, the average of estimated values in the tickets
was 1197! In 1907, he published the ‘Vox Populi’ paper in
the Nature journal; and mentioned that the result seems more
creditable to the trustworthiness of a democratic judgment that
might have been expected. In fact, he understood that each
ticket contains two data; i.e. information and error. Errors in
the tickets omit each other, and the information summarized.
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This is the main reason that the average of those tickets was
really quiet in comparison with the correct answer. This is the
core idea of the wisdom of crowds theory in social science.
Further, this theory is comparable with the jury theorem, which
was proposed by Condorcet. Supported by a wide range of
examples in business, management, economic, social science,
mathematician, etc., Surowiecki introduced the wisdom of
crowds as a framework for making optimized decisions in
2004. He proposed four criteria for a wise crowd: [21]
Independency People’s opinions are not determined by the
opinions of those around them.
Decentralization People are able to specialize and draw on
local knowledge.
Diversity Each person has private information, even if it is
only an eccentric interpretation of the known facts.
Aggregation Some mechanism exists for turning private judg-
ments into a collective decision.

There are some examples for unwise crowds in Surowiecki’s
book; i.e. Columbia shuttle disaster, bubble in the stock
markets, etc. Further, he mentioned to three failures in the
crowd intelligence. In other words, the wisdom of crowds
cannot solve these types of problems. The first is called ants
circular mill, which was introduced by William Beebe. An ant
mill is an observed phenomenon in which a group of army ants
separated from the main foraging party loses the pheromone
track and begins to follow one another, forming a continuously
rotating circle. Next is called Needle in a Haystack. In this type
of problem, just a few members of a group know the right
answer. The last is called random decisions. In this type of
problem, the final result is completely generated independent
of members’ decisions. Although the wisdom of crowds cannot
solve the mentioned problems, it is employed in the different
fields of science as a novel theory for solving problems. For
instance, it is one of the main references for the Delphi method
in management, crowd sourcing and funding in business, the
problem solving theorem and the central limit theorem in the
mathematician, etc. [21].

B. Cluster Ensemble

Clustering groups data points into clusters so that members
of the same cluster are more similar to each other than to
members of other clusters. Semi-supervised clustering uses
supervision information to aid the clustering process. This
paper focuses on pairwise constraints-based semi-supervised
methods. As constraint-based methods: Liu et al. proposed
semi-supervised linear discriminant clustering (Semi-LDC)
[29]. Wang et al. introduced a new technique by utilizing the
constrained pairwise data points and their neighbors, which is
denoted as constraint neighborhood projections that required
fewer labeled data points (constraints) and can naturally deal
with constraint conflicts [30]. Chen et al. recently proposed a
clustering algorithm which is based on graph clustering and
optimizing an appropriately weighted objective, where larger
weights are given to observations with lower uncertainty [31].

As mentioned before, individual clustering algorithms pro-
vide predictions with different accuracy rates. In practice,
individual algorithms may fail to provide accurate and stable

results. For solving this problem, cluster ensemble proved that
better final results can be generated by combining individual
clustering results instead of only choosing the best one [1].
The idea that not all partitions are suitable for cooperating to
generate the final clustering was proposed in Cluster Ensemble
Selection (CES). This method combines a selected group
of best individual clustering results according to consensus
metric(s) from the ensemble committee in order to improve
the accuracy of final results [7].

There are a wide range of studies in the unsupervised
cluster ensemble (selection). Vega et al. proposed Weighted
Partition Consensus via Kernels (WPCK) method, which
analyzes the set of partitions in the cluster ensemble and
extracts valuable information that can improve the quality
of the combination process [32]. In another study, Vega et
al. developed the Weighted Evidence Accumulation (WEA)
algorithm by computing the weighted association matrix as
the first step and after that, applying a hierarchical clustering
algorithm for selecting the consensus partition with the highest
lifetime criterion. They also introduced the Generalized Kernel
Partition Consensus (GKPC) method that uses the Information
Unification step after the generation in the methodology of
the WPCK method [33]. Jia et al. proposed SIM for diversity
measurement, which works based on the NMI [11]. Romano
et al. proposed Standardized Mutual Information (SMI) for
evaluating clustering results [34]. Yu et al. proposed the Hybrid
Clustering Solution Selection (HCSS) strategy that utilizes
a weighting function to combine several feature selection
techniques for the refinement of clustering solutions in the
ensemble [14]. Based on Normalized Crowd Agreement Index
(NCAI) and multi-granularity information collected among
individual clusterings, clusters, and data instances, Huang et
al. proposes two novel consensus functions, termed weighted
evidence accumulation clustering (WEAC) and graph parti-
tioning with multi-granularity link analysis (GP-MGLA) [35].
Jing et al. introduced a component generation approach for
producing ensemble components based on Stratified feature
sampling [16]. Yu et al. adopted affinity propagation (AP)
in different subspaces of the data set for generating a set of
individual clusterings [13]. Alizadeh et al. have concluded the
disadvantages of NMI as a symmetric criterion. They used the
APMM and Maximum (MAX) metrics to measure diversity
and stability, respectively, and suggested a new method for
building a co-association matrix from a subset of the individual
cluster results. While the proposed methods can solve the
symmetric problem of the NMI method, they just can combine
a sub-clusters of the generated partition in the reference set
[17], [9]. Yousefnezhad et al. proposed Weighted Spectral
Cluster Ensemble (WSCE) method by exploiting the concept
of community detection and graph based clustering [12].

Gao et al. introduced a graph-based consensus maximization
(BGCM) method for combining multiple supervised and un-
supervised models. This method consolidated a classification
solution by maximizing the consensus among both supervised
predictions and unsupervised constraints. Since, this research
used a classification approach for unsupervised learning, it
is sensitive to the quality of supervision information [36].
Huang et al. extended extreme learning machines (ELMs) for
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both semi-supervised and unsupervised tasks based on the
manifold regularization [35]. Anand et al. proposed a semi-
supervised framework for kernel mean shift clustering (SKMS)
that uses only pairwise constraints to guide the clustering
procedure. They used the initial kernel matrix by minimizing
a LogDet divergence-based objective function for first mapped
to a high-dimensional kernel space where the constraints are
imposed by a linear transformation of the mapped points [5].
Xiong et al. proposed Neighborhood-based Framework (NBF)
method. This method builds on the concept of neighborhood,
where neighborhoods contain labeled examples of different
clusters according to the pairwise constraints. Furthermore, it
expands the neighborhoods by selecting informative points and
querying their relationship with the neighborhoods [6].

One of the biggest challenges in the mentioned methods is
that they did not use the achieved errors, i.e. false positive
and false negative, for improving the quality of the final ag-
gregation. As mentioned before, WOC theory uses information
and errors for increasing the performance of the final result.
Briefly, information aggregate with each other; and also, errors
omit each other. There are several studies based on the WOC
theory in supervised learning, e.g. in recollecting ordering
information [25], rank ordering problem [24], estimating the
underlying value (e.g., the class) in the image processing
[26], underwater mine classification with imperfect labels
[27], minimum spanning tree problems [28], and classification
ensemble [23]. As the first WOC-based unsupervised CES
method, Alizadeh et al. proposed the Wisdom of Crowds
Cluster Ensemble (WOCCE) . They proposed a new strategy of
generating, evaluating, selecting, and combining the individual
clustering results based on WOC theory. The main advantages
of the WOCCE are using feedback mechanism for managing
errors in each iteration and utilizing the A3 metric (average of
APMM) to avoid the NMI symmetric problem. There are also
four disadvantages in the WOCCE method. Firstly, WOCCE
needs three distinct kinds of threshold values for generating
final clustering result. Further, the performance of WOCCE
is dramatically sensitive to the value of mentioned thresholds;
and finding the optimum threshold values is so hard in the real
application. Secondly, the concept of independency criterion
in WOCCE was just limited to random and initial points in
the same type individual clustering algorithms, whereas based
on the independency definition in WOC, it can be defined in
the term of mathematical independent random variables for all
kinds of clustering algorithms. Thirdly, the time complexity of
A3 is really high because it is the average of the APMM for
all existed clusters in a partition. Since APMM is technically
designed for comparing the similarity between a partition and a
cluster, there is a wide range of common parts that are sequen-
tially repeated in the A3 metric. Lastly, the WOCCE is only
developed for unsupervised learning, while this framework can
be also used for semi-supervised learning [18], [12]. Indeed,
this paper introduces a new framework for WOC-based CES
to solve the mentioned problems in the WOCCE.

III. THE PROPOSED METHOD

A. Definition

Based on outlines of the WOC theory [21], [23], [18], the
conditions for a crowd to be wise are: diversity, independency,
decentralization, and aggregation. Baker et al. [23] and Al-
izadeh et al. [18] redefined the WOC criteria for supervised
learning and unsupervised learning, respectively. They used
algorithms, data and results instead of people, information
and opinions in the mentioned definitions, respectively. Same
structure is utilized in this paper to redefine the criteria
for proposing a framework in both unsupervised and semi-
supervised methods. So, our definition for WOC criteria listed
as follows:
Independency The data, which is applied to clustering models,
must have the lowest correlation between its features.
Decentralization Algorithms are able to specialize the results
based on the local knowledge.
Diversity Each algorithm has private result, even if it is only
an eccentric interpretation of the known facts.
Aggregation Some method exists for combining private results
into a collective decision (final result).

As a whole, it can be stated that the WoCE can produce
final results in four stages. Firstly, the mapping function
removes the correlation between the features of raw data
set. This mapping function can satisfy independency criterion.
Then, for satisfying the decentralization criterion, this paper
applies local knowledge, i.e. the given number of clusters and
supervision information. Further, it employs the various kinds
of individual clustering algorithms. After these steps, diversity
criterion evaluates the probability of accuracy in the generated
clustering results. Finally, an effective aggregation method can
increase the performance of the proposed method. In the rest
of this section, the formulation of the proposed method will
be discussed, and this paper will mention what WOC criterion
is satisfied by using each part of the formulation. After that,
we briefly summarized the whole algorithm procedure.

B. Independency

Based on definitions of the WOC theory, people must decide
by using independent information. Hence, people can discover
novel patterns, which are utilized to solve complex problems
such as selecting the best person in the presidential election
or finding an irregular engineering problem in the NASA’s
shuttle [21], [18]. In machine learning arena, this concept
can be defined in the term of mathematical independent
random variables. In fact, independent features are generated
by removing the correlation between the features of raw data.
There are various methods for removing the correlation before
applying individual clustering techniques, such as Principle
Component Analysis (PCA) or Linear Discriminant Analy-
sis (LDA). They can validate that removing the correlation
dramatically improves the performance of clustering results
[20], [12]. Now, this paper defines independency criterion by
utilizing the concept of correlation. In other words, this paper
develops a new branch of mentioned methods in the CES
for mapping data to different dimensions with less correlation
between its features. In the rest of this section, we show that
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how our proposed method transforms features of raw data to
stable dimensions with less correlation.

Given a set of data examples X̂ = {x̂1, x̂2, . . . , x̂n}, and
the corresponding pairwise must-link constraint set M =
{(xi, xj); xi and xj belong to the same cluster} and pairwise
cannot-link constraint set C = {(xi, xj); xi and xj belong to
different clusters}. The simple average of X̂ can be denoted
as follows:

X̄ =
1

n

n∑
i=1

x̂i (1)

where n is the number of instances in the X̂; and x̂i denotes
the i− th instance of the data points. Now, this paper denotes
X as follows:

X = X̂ − X̄ = {(x̂1 − x̄1), (x̂2 − x̄2), . . . , (x̂n − x̄n)} (2)

where X̂ is the data points, and X̄ denotes simple average of
X̂ , which calculated by (1). It’s clear that X is zero-mean. In
other words, the excepted value of X is zero as follows:

E{X} = 0 (3)

Further, this paper defines Q : X ∈ Rm×n → Y ∈ Rm×n,
where m, n denote the number of features and data points,
respectively. The main goal of this mapping is just minimizing
the correlation between features. This problem can be refor-
mulate as follows:

Y = Q>X (4)

If the correlation (covariance) of X is considered R =
E{XX>} = 1

n

∑n
i=1 xix

>
i , then the correlation of Y will

be defined as follows:

E{Y Y >} = E{(Q>X)(Q>X)
>} =

E{Q>XX>Q} = Q>E{XX>}Q = Q>RQ
(5)

Based on above definition, the expected value of j−th feature
of X denotes as follows:

E{YjY >j } = q>Rq (6)

where q denotes the j−th index of the Q. In other words, our
correlation problem is changed to a variance problem. Now,
maximizing the q based on the variance of X will be omitted
the correlation between features. Since the scale of data after
mapping must be same, we assume following equation:

‖q‖ = 1. (7)

So, our problem will be reformulated as follows:

max[Ψ(q) = q>Rq]⇒
∂Ψ(q)

∂q
= 0⇒

Ψ(q + δq) = Ψ(q)⇒
(q + δq)

>
R(q + δq) = q>Rq

(8)

where the symbol δq is an abbreviation for ‘a small change in
q’. We consider (δq)>δq ≈ 0, so the above definition denotes
as follows:

(δq)>Rq = 0 (9)

Based on (7) and (8), we can assume as follows:

‖δq − q‖ = ‖q‖ = 1⇒ (δq)>q = 0 (10)

Now, this paper defines following equation by using (9) and
(10):

(δq)>Rq − λ(δq)>q = 0⇒
(δq)>[Rq − λq] = 0

(11)

where λ ∈ R is a constant. Since (δq)> 6= 0, the following
equation must be satisfy for minimizing correlation between
features:

Rq = qλ (12)

where R and λ denote the eigenvectors and eigenvalues,
respectively. For all features of X the above equation will
be denoted as follows:

RQ = QΛ (13)

which is called eigenstructure equation. In above equation, Λ
is a diagonal matrix. Based on (7), we can define following
equation:

‖q‖2 = 1⇒ Q>Q = I (14)

where I is identity matrix. Following equation denotes based
on (13) and (14):

RQ = QΛ⇒
RQQ> = QΛQ> ⇒
RI = QΛQ> ⇒
R = Q>ΛQ⇒

R =

m∑
j=1

λjqiq
>
j

(15)

where m denotes number of features in data X . Now, consider
that R is a descending order based on Λ values. For an optional
feature selection in our unsupervised approach, we can define
the following equation instead of (15):

R =

d∑
j=1

λjqiq
>
j (16)

where d < m is the number of features, which must
be selected for generating results. Algorithm 1 shows the
mapping function, which can generate independent features
by minimizing the correlation of data set. For reducing the
time complexity, this paper uses an EM algorithm [37] for
estimating the eigenvalues/vectors (Λ and Q) in Algorithm 1.
Please see Section A.5 in [37] for more information.



IEEE TRANSACTION ON CYBERNETICS 6

Algorithm 1 The Mapping Function

Input: Data set X̂ = {x̂1, x̂2, . . . , x̂n},
d as number of features:
d = 0 is considered for deactivating the feature selection

Output: Mapped data set Y
Method:

1. Calculate simple average X̄ by using (1).
2. Calculate X by using (2).
3. Generate R = E{XX>} = 1

n

∑n
i=1 xix

>
i .

4. Calculate eigenvalues/vectors (Λ and Q) of R by [37].
5. Sort Q based on descending values of λ.
6. if d is not zero (d 6= 0) then

Select [1, d] features of Q, and sorting as Qd,
else Qd = Q.
end if

7. Return Y = Q>d X .

C. Decentralization

In WOC theory, the decentralization criterion increases the
crowd intelligence, the margin of error and the quality of the
final result [21], [18]. In the clustering problems, the same
concept is the main reason for using the CES approach to
improve the quality of the final result. So, there is a wide range
of quality metrics in the previous CES methods [7], [17], [9].
Based on the WOC theory, this paper uses local knowledge
for increasing the quality of individual clustering results. There
are two different kinds of local knowledge in the CES; i.e. the
number of clusters in unsupervised learning and supervision
information in semi-supervised learning. Moreover, employing
different kinds of clustering algorithms significantly can affect
to generate more specialize clustering results because they
include different kinds of objective functions [18]. Briefly,
this paper applies the different kinds of clustering algorithms
on the mapped data for generating the individual clustering
results in both unsupervised and semi-supervised versions of
the proposed method. Further, these algorithms use different
numbers of clusters in the range of [2, k+2], where k denotes
the number of clusters in the final results. Since, this procedure
generates all available kinds of patterns as the reference set, it
can increase the robustness of the final results. In addition,
this paper develops a new feature selection method based
on supervision information for improving the performance
of the final result. In the rest of this section, we show that
how this paper uses supervision information for generating
common/local knowledge in the semi-supervised approach.

As mentioned before, our proposed method is based on pair-
wise constraint, i.e. must-links and cannot-links. This paper
denotes the must-link constraint with M , and the cannot-link
constraint with C. For generating each individual clustering
result, this paper defines Constraint Projection, which is a set
of projective vectors W = [w1, w2, . . . , wd], such that the M
and C are most faithfully preserved in the transformed low-
dimensional representations zi = W>yi. That is, examples
involved by M should be close while examples involved
by C should be far in the low-dimensional space. Define

the objective function as maximizing J(W ) with respect to
W>W = I, where:

J (W ) =
1

2nC

∑
(yi,yj)∈C

‖zi − zj‖2

− γ

2nM

∑
(yi,yj)∈M

‖zi − zj‖2

=
1

2nC

∑
(yi,yj)∈C

‖W>yi −W>yj‖2

− γ

2nM

∑
(yi,yj)∈M

‖W>yi −W>yj‖2

(17)

where nC and nM denote the cardinalities of C and M ,
respectively, and γ is a scaling coefficient. The intuition behind
(17) is to let the average distance in the low-dimensional space
between examples involved by the cannot-link C as large as
possible, while distances between examples involved by the
must-link M as small as possible. Since the distance between
examples in the same cluster is typically smaller than that in
different clusters, a scaling parameter γ is added to balance
the contributions of the two terms in (17) and its value can be
estimated as follows:

γ =

1
nC

∑
(yi,yj)∈C ‖yi − yj‖

2

1
nM

∑
(yi,yj)∈M ‖yi − yj‖

2
(18)

We can also reformulate the objective function in (17) in a
more convenient way as follows:

J (W ) = trace
(
W> (SC − γSM )W

)
(19)

where SC and SM are respectively defined as:

SC =
1

2nC

∑
(yi,yj)∈C

(yi − yj) (yi − yj)> (20)

SM =
1

2nM

∑
(yi,yj)∈M

(yi − yj) (yi − yj)> (21)

This paper calls SC and SM defined in (20) and (21) re-
spectively as cannot-link scatter matrix and must-link scatter
matrix, which resemble the concepts of between-cluster scatter
matrix and within-cluster scatter matrix respectively in linear
discriminant analysis (LDA) [20]. The difference lies in that
the latter uses cluster labels to generate scatter matrices,
while the former uses pairwise constraints to generate scatter
matrices. Obviously, the problem expressed by (19) is a typical
eigen-problem, and can be efficiently solved by computing
the eigenvectors of SC − γSM corresponding to the posi-
tive eigenvalues. In other words, just consider that W̄ and
Z = {ζ1, ζ2, . . . , ζp, . . . , ζd} are eigenvectors and eigenvalues
of SC−γSM , respectively. The W̄ and ζ is descending ordered
based on ζ values (ζ1 ≥ ζ2 ≥ . . . ≥ ζp > 0 ≥ . . . ≥ ζd).
Also, W = {W̄ | ∀W̄p where p shows the position of positive
eigenvalues (ζp > 0)}. Further, the transformed data set is
calculated as follows:

Z = W>Y (22)
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Algorithm 2 illustrates the transformation algorithm for both
unsupervised and semi-supervised approaches. The trans-
formed data is applied to different kinds of individual clus-
tering algorithms for generating the reference set.

Algorithm 2 The Transformation Algorithm

Input: data set X̂ ,
must-links M , cannot-links C,

(as supervision information)
Number of features d:

(as optional feature selection)
Output: Mapped data set Z
Method:

1. Generating Y by using Algorithm 1 and X̂ and d.
2. if M and C are empty
then return Z = Y
end if
3. Generating SM , SC , γ by using Y , (18), (20), (21)
4. Calculating the eigenvalues W̄ and eigenvectors ζ

of SC − γSM .
5. Calculating the W by using W̄p based on ζ > 0.
6. Return Z = W>Y

D. Diversity

Indeed, diversity is a common concept in both the WOC
theory and the CES methods. For instance, NMI [19] and
APMM [9] are two famous methods for calculating diversity
in the cluster ensemble (selection). The diversity increases the
stability of the final results. As mentioned before, NMI has
the symmetric problem. This problem causes that evaluation
of the diversity between two clusters always results equal,
when those clusters are complements of each other. This
fault is occurred when the number of positive clusters in
the considered partition of reference set is greater than 1
[17], [9], [18]. Although some of the researches proposed
alternative methods such as APMM [9] and MAX [17] for
solving this problem, their proposed methods were utilized
for evaluating diversity between a cluster and a partition. As a
result, using mentioned methods for evaluating the diversity of
two partitions increases the time complexity. In the rest of this
section, we firstly explain that how NMI and APMM work.
Then, we develop a new metric, which directly can evaluate
diversity between two partitions.

Indeed, NMI employed three different Shannon’s entropy
for evaluating the similarity between two partitions. Since,
NMI is normalized, the 1−NMI was always considered as the
diversity between mentioned partitions. NMI used the entropy
of common instances between two partitions as numerator,
and also employed the sum of entropy of each partition as
denominator [17], [9], [19]. As mentioned before, NMI has
symmetric problem. As another alternative, APMM tried to
solve the mentioned problem for evaluating the similarity
between a cluster (Cai from P a) and all clusters of another
partition (P b) [9]. Since, some common parts of APMM must
be repeated for calculating diversity of two partitions, using the
APMM for evaluating the diversity of two partitions increases

the time complexity. Further, simple average was utilized for
calculating the diversity between all clusters of a partition
(P a) versus all clusters of another partition (P b) [9], [18].
This averaging procedure causes to decrease the robustness
of achieved evaluation because it finds the mean of similarity
between all clusters of two partitions instead of calculating
maximum similarity (minimum diversity) among of them. This
paper proposes a new greedy method based on the main idea
of the APMM. It can calculate diversity between two partitions
without repeating common parts; and also it avoids using the
averaging procedure.

As mentioned in the previous section, individual clustering
results are generated by using the transformed data on the
different kinds of clustering algorithms. This paper denotes
the generated results as a reference set as follows:

E = {P1, P2, . . . , Pi, . . . , PT } (23)

where T denotes the number of individual clustering results
and pi is the i − th partition of the generated results. Now,
this paper finds the maximum similarity for each partition by
considering the number of all instances in that partition versus
the number of instances in each cluster of that partition as
follows:

η(P ) = maxci∈P (ni log(
n

ni
)) (24)

where P is a partition from the reference set; ci denotes
the i − th cluster of partition P , and n and ni denote the
cardinalities of P and ci, respectively. Furthermore, this paper
finds the maximum similarity for each partition by considering
the number of instances in each cluster of that partition versus
the number of all instances in that partition as follows:

ξ(P ) = maxci∈P (ni log(
ni
n

)) (25)

where the notations of P , ci, n, ni define same as the previous
equation. Now, this paper determines the following equation as
maximum similarity between a partition versus other partitions
in the reference set:

Θ(P,E) = maxPi∈E(max
cj∈Pi

nji log(
nji
n

)) (26)

where E and P are the reference set and a partition from
the reference set, respectively. Also, Pi and cj denote the
i − th partition from the reference set E and j − th cluster
from the partition Pi, respectively. Further, nji and n are
the cardinalities of cj and P , respectively. Now, this paper
proposes the Uniformity as the diversity of partition P versus
all partitions of the reference set E as follows:

Uniformity(P,E) = 1− −2η(P )

ξ(P ) + Θ(P,E)
(27)

where E is the reference set (ensemble committee), and
P denotes a partition from the reference set. Uniformity is
normalized between 0 ≤ Uniformity ≤ 1. As a greedy
metric, Uniformity employs a strict strategy for evaluating
the diversity between partition P and the other partitions of
ensemble committee. In other words, Uniformity represents
a value near of zero for a partition with low diversity, and
illustrates a value near of one for a partition with high
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Fig. 1: In the traditional EAC, the α(i,j) represents the number
of clusters shared by objects with indices (i, j); and β(i,j) is the
number of partitions in which this pair of instances (i and j)
is simultaneously presented. This method assumes the weights
of all individual clustering results (α(i,j)) are the same. This
paper proposes Weighted EAC for optimizing this method by
using a weight for each individual clustering results instead of
just counting their shared clusters. While the weight can have
different definitions in the other applications, this paper uses
average of Uniformity of two parititon as the weight in the
WEAC (ᾱ(i,j) =

∑
α(i,j) ρi,j).

diversity. In addition, it avoids to repeat common parts, i.e.
equations (25) and (26), for evaluating the diversity in each
comparison.

E. Aggregation

Thresholding is used for selecting the evaluated individual
results in the CES. Then co-association matrix is generated
by using consensus function on the selected results. Lastly,
the final result is generated by applying linkage methods
on the co-association matrix. These methods generate the
Dendrogram and cut it based on the number of clusters in
the result [19], [18]. In recent years, many papers have used
EAC as a high-performance consensus function for combining
individual results [19], [9], [18], [8], [7]. EAC uses the number
of clusters shared by objects over the number of partitions in
which each selected pair of objects is simultaneously presented
for generating each cell of the co-association matrix. Figure 1
illustrates the effect of the EAC equation (c (i, j) = α(i,j)

β(i,j) ) on
the shape of Dendrogram. Where α(i,j) represents the number
of clusters shared by objects with indices (i, j); and β(i,j) is the
number of partitions in which this pair of instances (i and j) is
simultaneously presented. As a matter of fact; EAC considers
that the weights of all algorithms results are the same. Instead
of counting these indices, this paper uses following equation,
which is called Weighted EAC (WEAC), for generating the
co-association matrix.

c (i, j) =

∑
α(i,j) ρi,j

β (i, j)
(28)

where α (i, j) and β (i, j) are same as the EAC equation; Also,
ρi,j is the weight of combining the instances. Although, this
weight can have different definitions in the other applications,

this paper uses average of Uniformity of two algorithms as
follows for combining individual results:

ρij =
1

2
(Uniformity(Pi, E) + Uniformity(Pj , E)) (29)

where Uniformity(Pi, E) and Uniformity(Pj , E) illustrate
the uniformities of the algorithms, which generated the results
for indices i and j. In other words, as a new mechanism,
this paper generates the effective results when both algorithms
have high Uniformity values; and also the effects of individual
results are near of zero when the both algorithms have small
values in the Uniformity metric. As a result, this paper just
omits the effect of low quality individual results by using men-
tioned mechanism instead of selecting them by thresholding
procedures. Further, the final co-association matrix, which is
a symmetric matrix, will be generated by (28) as follows:

Π = WEAC(τ) =



c(1, 1) c(1, 2) . . . c(1, n)
c(2, 1) c(2, 2) . . . c(2, n)

...
...

...
...

c(i, 1) c(i, 2) c(i, j) c(i, n)
...

...
...

...
c(n, 1) c(n, 2) . . . c(n, n)


(30)

where n is the number of data points; and c(i, j) denotes the
final aggregation for i− th and j − th instances.

Algorithm 3 The WoCE algorithm

Input: Data set X̂ = {x̂i}ni=1,
Must-links M ,
Cannot-links C,
Number of clusters k,
Number of selected features d (default d=0),

Output: Pf as partition of data set into k clusters
Method:

1. Initial an empty set as Reference-Set.
2. Generate Z by applying Algorithm 2 to (X̂ , M , C, d).
foreach individual clustering algorithms do
3. iResult = Clustering-Algorithm(Z, k).
4. diversity = Uniformity (iResult, Reference−Set).
5. Add [iResult, diversity] to Reference− Set
end foreach
6. Co−Association = WEAC(Reference− Set)
7. Dendrogram = Average-Linkage (Co−Association)
8. Final-Result = Cluster (Dendrogram, k)

F. Summarization and Discussion

Algorithm 3 shows the pseudo code of the proposed method.
In this algorithm, the distances are measured by an Euclidean
metric. The Clustering-Algorithm function builds the partitions
of individual clustering results, which will be discussed in
the next section; uniformity function evaluates individual
clustering results (iResult) by using (27). Then, evaluated
results will be added to reference set. The WEAC function
generates the co-association matrix, according to (28). The
Average-Linkage function creates the final ensemble according
to the Average Linkage method [18].
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There are three points, which must be discussed before
this paper starts to explain the empirical studies. Firstly,
why this paper chooses the WOC as a framework in the
cluster ensemble? As mentioned before, the main reasons for
using cluster ensemble are increasing performance, stability,
robustness of the final results on the clustering problems. As
already stated, the WOC theory is superior to that of a few
experts. In other words, it is proven [21], [23], [18] that results
made by aggregating the information of groups have better
performance, stability, and robustness than those made by
any single group member if the WOC criteria are satisfied.
Therefore, the cluster ensemble and the WOC are the same
solutions with the same goals in two different sciences, i.e.
machine learning and social science, respectively. Next, what
are the common concepts between our proposed criteria in
the WOC and previous methods in clustering problems? In
fact, diversity is existed in clustering with the same title, e.g.
NMI and APMM are two famous methods for calculating
diversity in the cluster ensemble (selection). The diversity
increases the stability and robustness of the final results.
Further, independency referred to the correlation concept in
the learning methods. This correlation can be defined between
features of raw data. There are some techniques, i.e. Principle
Component Analysis (PCA), Linear Discriminant Analysis
(LDA), etc. for mapping data to new dimensions without any
correlation between its features. This paper uses a new branch
of these techniques for satisfying the independency criterion,
which can increase the performance of the final results. In
addition, decentralization guarantees that the quality of the
final result is optimized. In other words, it uses different
individual clustering algorithms, which use different objective
functions, for generating all possible patterns as the reference
set in the cluster ensemble problem. Moreover, an effective
aggregation method can combine the final result without
thresholding procedure. The last question is why all of the
four conditions of the WOC must be satisfied in the ensemble
learning? Based on previous question, the proposed method
can be defined as a CES method that applied a feature mapping
in advance. In practice, all of clustering analysis has these
steps [12], [18], [36]. Therefore, the WOC framework does
not add any new stage in the pipeline on clustering analysis.
It just defined what is the robust and compulsory structure for
an ensemble framework in real-world application.

IV. EXPERIMENTS

The empirical studies will be presented in this section. The
unsupervised methods are used to find meaningful patterns
in unlabeled data sets such as web documents; and semi-
supervised employs supervision information for generating
more robust and stable final results in real world application.
Since, the real data set does not have class labels, there is
no direct evaluation method for estimating the performance in
unsupervised or semi-supervised methods. Like many previous
researches [7], [17], [9], [18], [36], [5], this paper compares
the performance of its proposed method with other individual
clustering methods and cluster ensemble (selection) methods
by using standard data sets and their real classes. More-
over, the supervision information will be randomly generated

TABLE I: The individual clustering algorithms, which are used
for generating individual clustering results

No. Method
1 K-means
2 Fuzzy C-means
3 Median K-flats
4 Gaussian mixture
5 Subtract clustering
6 Single-linkage euclidean
7 Single-linkage hamming
8 Single-linkage cosine
9 Average-linkage euclidean
10 Average-linkage hamming
11 Average-linkage cosine
12 Complete-linkage euclidean
13 Complete-linkage hamming
14 Complete-linkage cosine
15 Ward-linkage euclidean
16 Ward-linkage hamming
17 Ward-linkage cosine
18 Spectral using a sparse similarity matrix
19 Spectral using Nystrom method with orthogonalization
20 Spectral using Nystrom method without orthogonalization

based on real class labels. In this paper, all of algorithms
are implemented in the MATLAB R2015a (8.5) by authors
on a PC with certain specifications2 in order to generate
experimental results. All results are reported by averaging
the results of 10 independent runs of the algorithms. Table
I demonstrates the individual clustering algorithms, which are
used for generating the individual clustering results in our
proposed method. Further, the number of individual clustering
results for the ensemble methods is set as 20 in the reference
set.

A. Data Sets

This paper uses three different groups of data sets for gener-
ating experimental results; i.e. image data sets, document data
sets and other UCI data sets. Table II illustrates the properties
of these data sets. This paper uses the USPS digits data set,
which is a collection of 16× 16 gray-scale images of natural
handwritten digits and is available from [38]. Furthermore,
this paper utilizes ImageNet [39], MNIST, and CIFAR-10 [40]
as three image-based data sets, which are mostly employed
in Deep Learning studies [40]. As another alternative in the
image-based data set, this paper uses Alzheimer’s Diseases
Neuroimaging Initiative (ADNI) data set for 202 subjects.
This data set contains Magnetic Resonance Imaging (MRI)
and Positron Emission Tomography (PET) images from human
Brian in two categories (which are shown by C1 and C2 in the
Table II and III) for recognizing the Alzheimer diseases. In the
first category, this data set partitions subjects to three groups
of Health Control (HC), Mild Cognitive Impairment (MCI),
and Alzheimer’s Diseases (AD). In the second category, there
are four groups because the MCI will be partitioned into
high and low risk groups (HMCI/LMCI). This paper uses all
possible forms of this data set by using only MRI features,

2Apple Mac Book Pro, CPU = Intel Core i7 (4*2.4 GHz), RAM = 8GB,
OS = OS X 10.11
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TABLE II: The standard data sets

Data Set Instances Features Class
20 Newsgroups 26214 18864 20
ADNI-MRI-C1 202 93 3
ADNI-MRI-C2 202 93 4
ADNI-PET-C1 202 93 3
ADNI-PET-C2 202 93 4
ADNI-FUL-C1 202 186 3
ADNI-FUL-C2 202 186 4
Arcene 900 10000 2
Bala. Scale 625 4 3
Brea. Cancer 286 9 2
Bupa 345 6 2
CIFAR-10 5000 1024 10
CNAE-9 1080 857 9
Galaxy 323 4 7
Glass 214 10 6
Half Ring 400 2 2
ImageNet 5000 400 5
Ionosphere 351 34 2
Iris 150 4 3
Letters 20000 16 26
MNIST 70000 784 10
Optdigit 5620 62 10
Pendigits 10992 16 10
Reuters-21578 8293 18933 65
SA Hart 462 9 2
Sonar 208 60 2
Statlog 6435 36 7
USPS 9298 256 10
Wine 178 13 2
Yeast 1484 8 10

only PET features and all of MRI and PET features (FUL)
in each of two categories. More information about ADNI-
202 is available in [41]. As a document based data set,
the 20 Newsgroups is a collection of approximately 20,000
newsgroup documents, which is partitioned (nearly) evenly
across 20 different newsgroups. Some of the newsgroups are
very closely related to each other, while others are highly
unrelated. It has become a popular data set for experiments
in text applications of machine learning techniques, such as
text classification and text clustering. As two other document-
based data sets, the Reuters-21578 [42] and Letters [15] are
employed in this paper. The rest of standard data sets are
from UCI [43]. This paper has chosen data sets which are as
diverse as possible in their numbers of true clusters, features,
and samples because this variety better validates the obtained
results. The features of the data sets are normalized to a mean
of 0 and variance of 1, i.e. N (0, 1).

B. Performance analysis for unsupervised methods

In this section the performance (accuracy metric [20]) of
unsupervised version of proposed method (UWoCE) will be
analyzed. As mentioned before, algorithms listed in Table I
were employed for generating the individual clustering results
in our proposed method. Further, the sets of supervision
information (must-links and cannot links) are considered null
in this section. Also, the final clustering performance was
evaluated by re-labeling between obtained clusters and the
ground truth labels and then counting the percentage of
correctly classified samples [18], [12]. The results of the

proposed method are compared with full ensemble (EAC)
[19] as baseline, WPCK [32], GKPC [33], HCSS [14], GP-
MGLA [15], and WOCCE [18] which are state-of-the-art
cluster ensemble (selection) methods. The performance of full
ensemble method (EAC) is reported for demonstrating the
effect of selecting the best results in comparison combing all
generated result with each others. In addition, the performance
of the WPCK, GKPC, HCSS, and GP-MGLA are reported as
four weighted clustering ensemble methods. For representing
the effect of Uniformity on the performance of the final results,
it compares with three state-of-the-art metrics in diversity
evaluation (A3 [18], SACT [15], and CA [33]). This paper
does not use optional feature selection in this section (d = 0).

The experimental results are given in Table III. In this
table, the best result which is achieved for each data set
is highlighted in bold. As depicted in this table, the results
of the EAC illustrate the effect of evaluation and selection
in cluster ensemble selection methods. Since some of the
four conditions of the WOC theory do not exist in EAC,
this method is a good example of unwise crowd. According
to this table, the proposed algorithm (WoCE) has generated
better results in comparison with other individual and en-
semble algorithms. Even though the proposed method was
outperformed by a number of algorithms in four data sets
(ADNI-MRI-C2, SA Heart, Sonar, and Yeast), the majority of
the results demonstrate the superior accuracy of the proposed
method in comparison with other algorithms. In addition, the
difference between the performance of proposed method and
the best result in those three data sets is lower that 2%. In
addition, the WOCCE and the proposed method generate more
stable results in comparison with other methods based on the
standard variances. As mentioned before, this is the effect of
WOC framework.

C. Performance analysis for semi-supervised methods

The empirical results of semi-supervised methods will be
analyzed in this section. Since most of the semi-supervised
cluster ensemble methods [6], [29], [36] use feature selection
based on the supervision information, this paper compares the
performance of semi-supervised methods on high-dimensional
and large-scale data set in the Table II; i.e. 20 Newsgroups,
Letters, and Reuters-21578 as document-based data sets,
ADNI, CIFAR-10, ImageNet, MNIST, and USPS as image-
based data sets, and also Arcene, CNAE-9, Optdigit, Sonar
from UCI repository. This paper does not use the optional
feature selection in this section (d = 0).

In this paper, 1% to 5% of instances with class labels are
randomly selected for generating the supervision information
(a half for must-link and a half for cannot-link); e.g. 1%
(2620) of instances are selected in the 20 Newsgroups data
set for generating the pairwise constraints, where 655 must-
links and 655 cannot-links constraints are generated by the
selected instances. In addition, the supervision information,
which applied to the methods, are same in each independent
run for all methods. Notably, this paper does not employ
all combinations of the randomly selected instances as the
pairwise constraints (must-links and cannot-links). In other
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TABLE III: The performance of unsupervised methods

DATA SETS EAC WPCK GKPC HCSS GP-MGLA WOCCE UWOCE
20 NEWSGROUPS 26.19±0.72 27.01±0.93 28.45±1.02 30.62±0.84 35.47±0.91 32.62±0.52 38.23±0.12
ADNI-MRI-C1 42.19±0.37 41.24±0.97 43.51±1.02 46.61±0.36 49.36±0.7 48.82±0.37 51.15±0.73
ADNI-MRI-C2 39.52±0.31 39.95±0.61 40.09±0.51 41.32±0.81 40.72±1.25 42.22±0.44 41.23±0.95
ADNI-PET-C1 40.38±0.52 40.51±0.26 43.79±1.04 45.3±0.49 48.22±0.71 49.19±0.26 51.17±0.98
ADNI-PET-C2 38.85±0.59 37.51±0.69 36.58±0.72 41.92±1.18 40.68±0.73 39.43±0.79 42.48±0.67
ADNI-FUL-C1 44.42±0.91 43.84±0.93 46.56±0.49 49.62±0.81 49.27±0.61 48.82±0.41 50.89±0.83
ADNI-FUL-C2 47.21±0.63 49.71±0.99 51.26±0.64 52.26±0.66 51.92±0.7 49.39±0.63 53.31±0.97
ARCENE 61.79±0.813 63.92±0.81 63.26±1.04 65.54±0.73 66.32±0.91 65.16±0.32 68.13±0.82
BALA. SCALE 54.09±1.75 55.42±0.94 56.04±0.72 57.41±0.56 56.23±0.94 57.88±0.61 60.64±0.58
BREA. CANCER 90.17±1.24 81.93±1.92 82.43±1.24 65.51±1.91 72.27±1.06 96.92±0.77 97±0.14
BUPA 51.73±0.99 57.91±0.82 59.09±0.98 58.33±1.32 58.91±0.51 57.02±0.46 60.83±0.12
CIFAR-10 51.92±1.24 54.1±0.88 55.52±0.79 56.12±0.91 57.82±0.85 59.37±0.52 62.04±0.32
CNAE-9 72.41±1.09 75.41±0.69 75.53±0.55 80.63±1.41 81.29±0.81 79.2±0.58 84.12±0.44
GALAXY 33.12±0.52 30.99±1 32.71±0.84 35.71±0.61 34.72±0.96 34.88±0.81 37.18±0.67
GLASS 50.93±0.18 45.01±2.03 46.57±2.97 52.31±0.68 50.62±0.38 51.82±0.92 57±0.78
HALF RING 77.53±0.21 82.54±0.93 85.41±0.94 90.53±0.67 89.99±1.02 87.2±0.14 98.11±0.31
IMAGENET 23.53±0.81 32.86±0.42 35.32±0.59 35.04±0.93 33.51±0.83 38.14±0.62 41.67±0.7
IONOSPHERE 68.12±0.42 66.52±1.1 67.04±0.79 71.23±0.91 70.9±0.99 70.52±0.15 73.67±0.41
IRIS 73.51±0.82 79.92±1.86 80.39±0.83 85.62±0.82 75.31±0.28 92±0.59 96.3±0.62
LETTERS 42.82±0.81 48.95±1.34 47.68±0.98 54.32±0.9 52.19±0.49 53.69±0.73 55.83±0.26
MNIST 52.18±2.76 55.66±1.41 62.46±0.76 59.92±1.41 67.39±0.97 66.21±0.92 69.72±0.71
OPTDIGIT 65.92±1.2 70.27±0.84 74.67±0.42 78.99±1.02 76.69±0.72 77.16±0.21 80.56±0.69
PENDIGITS 52.88±0.92 55.73±0.75 54.08±0.38 62.82±0.81 60.78±0.95 61.68±0.18 64.13±0.42
REUTERS-21578 62.34±0.72 70.24±0.92 71.82±0.78 74.63±0.87 75.29±0.66 68.85±0.32 76.41±0.24
SA HART 66.39±1.62 67.38±1.02 66.53±1.26 70.54±0.93 71.42±0.87 73.7±0.46 72.05±0.16
SONAR 50.48±0.92 53.84±1.01 53.25±0.51 61.82±0.72 59.12±0.83 54.39±0.25 60.06±0.87
STATLOG 52.28±0.91 55.39±0.75 55.26±0.97 57.33±0.91 56.42±0.92 55.77±0.71 59.76±0.5
USPS 60.49±0.84 59.42±0.78 62.11±0.37 64.92±1.68 63.08±0.59 65.21±0.69 66.01±0.24
WINE 70.24±0.72 75.62±1.79 81.25±0.93 79.29±0.51 83.16±0.84 71.34±0.55 89.46±0.14
YEAST 33.81±0.32 36.23±0.61 35.23±0.72 40.25±0.88 42.03±0.91 37.76±0.26 41.12±0.4

words, each randomly selected instance is used once for
generating just a must-link or a cannot-link. There are two
reasons for this strategy of generating pairwise constraints.
Firstly, this strategy provides better diversity among the gen-
erated pairwise constraints. Secondly, this strategy represents
better simulation for the real application of prior supervision
information. Indeed, there is no class label in the real-world
applications, and generating the pairwise constraints from all
combinations of the randomly selected instances is impossible
or expensive [5], [6], [36]. For instance, just consider an
interactive image search engine, where it shows two random
images to users in each attempt and asks users to specify that
these images are same (must-link) or different (cannot-link).
Then, the search engine will improve the clustering results
based on these limited feedbacks.

The final clustering performance (accuracy metric [20])
was evaluated by re-labeling between obtained clusters and
the ground truth labels and then counting the percentage
of correctly classified samples [18]. Figure 2 illustrates the
performance of the proposed method (WoCE) in comparison
with the RP [44], BGCM [36], NBF [6] and SKMS [5]. In
this figure, the standard deviations of the results are lower than
1% (for 10 independent runs). This paper reports the perfor-
mance of RP as a classical method in the semi-supervised
cluster ensemble. Also, this paper reports the performance
of BGCM as a novel graph-based approach in the semi-
supervised clustering. Notably, the BGCM has two versions;
i.e. unsupervised and semi-supervised. This paper uses the

semi-supervised version of BGCM in this section. What’s
more, this paper uses SKMS as a kernel-based method in semi-
supervised clustering. Last but not least, the empirical results
of the proposed method are compared with NBF as another
heuristic method in the semi-supervised cluster ensemble.
Even though WoCE was outperformed in one data set (Opt-
digit) by some algorithms, the majority of results demonstrate
superior accuracy for the proposed method. In addition, the
clustering performance of some algorithms in Fig. 2 (k) and (`)
become worse with increased number of pairwise constraints.
As mentioned before, pairwise constraints often result in
highly unstable clustering performance [5], [6]. These figures
are good examples for this issue, where some of the previous
methods cannot handle the extra supervision information. In
fact, the supervision information made unstable individual
clustering results and significantly reduce the performance of
the mentioned methods. In these cases, our proposed method
has handled the supervision information by employing the
WOC theory, i.e. better data representation (Algorithm 1 and
2), robust individual clustering evaluation (Uniformity metric),
and effective aggregating mechanism (WEAC).

D. Optional feature selection in unsupervised-method

In this section, the performance of the proposed method
will be analyzed by using the optional feature selection (d
parameter). Since feature selection is automatically used by
applying the supervision information on the mapped data set in
the semi-supervised version of the proposed method, the per-
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(c) Arcene
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Fig. 2: The performance of semi-supervised methods.

formance of the unsupervised version of the proposed method
(UWoCE) will be analyzed in this section. This paper employs
high-dimension data sets, i.e. Arcene, CIFAR-10, MNIST, and
USPS, for analyzing the performance of the proposed method.
Figure 3 (a) shows the relationship between the performances
of the proposed method based on the percentage of selected
features in different data sets. The vertical axis refers to the
performance while the horizontal axis refers to the percentage
of the selected features in each data set. As depicted in this
figure, the optional feature selection can significantly increase
the performance of final results on high-dimensional data sets.
So, this paper offers that the optional feature selection will
be used for high-dimensional data sets to handle features’
sparsity. Moreover, this experiment is the reason for using
high-dimensional and large-scale data sets in the previous
section. The important questions which must be discussed
here are what is different between the mapping function and
the optional feature selection? And where the optional feature
selection can be employed? Indeed, the mapping function,
which is illustrated in Algorithm 1, minimizes the correlation
between features; and it maps data to a new domain, which the
covariance between different features is near zero. Most of the
time, this function maps data to the stable dimensions, which
can dramatically improve the accuracy of the final results.
It can be also formulated as follows: Q : X ∈ Rm×n →

Y ∈ Rm×n, where Q can satisfy the independency criterion
in the WOC theory. In a high-dimensional data set, some
of the calculated eigenvalues (Λ = {λj}) approach near to
zero. Since these eigenvalues trivially effect on the mapping
Q, they can be omitted for reducing the dimensions of the
data set and the time and space complexities of the clustering
analysis. In other words, these eigenvalues may reduce the
stability of the final results [12]. By considering the optional
feature selection, the mapping Q can be formulated as follows:
Q : X ∈ Rm×n → Y ∈ Rd×n, where d < m. Therefore,
employing this optional feature selection for analyzing the
high-dimension data set can improve the stability of the
mapping Q as well as the performance of the final result (see
Fig. 3 (a) ). In addition, this feature selection is better to use
based on the fluctuation of the eigenvalues (remove near zero
values) in each problem.

E. Time complexity analysis

In this section, the runtime of both unsupervised and semi-
supervised methods will be compared by using various data
sets, i.e. three large-scale data sets (Letters, MNIST, 20 News-
groups) and two high-dimension data sets (Arcene, Reuters-
21578). Figure 3 (b) illustrates the relationship between the
runtime of the mentioned methods and the size of data sets.
The vertical axis refers to the runtime while the horizontal
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Fig. 3: (a) The performance of UWoCE method by using the
optional feature selection. (b) The runtime analysis.

axis refers to the algorithms. As mentioned before, all of
the results in this experiment are generated by a PC with a
certain specifications. As depicted in this figure, the runtime
of the semi-supervised methods (the first five bars) is more
than the runtime of the unsupervised methods because they
need an additional step to apply the supervision information
(mostly in the form of an Eigenproblem) [36]. By considering
the performance of these methods in Table III and Fig. 2,
WoCE (the first bar) and UWoCE (the last bar) generated more
efficient results in comparison with other clustering methods.
Indeed, the proposed method selects the features based on the
correlations between data points and supervision information
(in semi-supervised approach). So, the number of calculations
for generating individual clustering results will be significantly
decreased in comparison with other cluster ensemble methods,
while the performance of the final results is rapidly increased.

There are some technical issues that must be discussed here.
Firstly, this paper uses an EM algorithm [37] for estimating
the eigenvalues/vectors, which this algorithm can significantly
reduce the time complexity of the mapping function in Al-
gorithm 1. Secondly, the size of the transformed matrix (eq.
22) in the proposed method for applying the supervision
information is limited to the size of pairwise constraints. This
size is really small in comparison with the size of instances;
e.g. In 20 Newsgroup data set, the size of this matrix for 1%
of randomly sampled pairwise constraints is 655× 655, while
the instance similarity matrix is 26214×26214. Notably, most
of the previous studies such as SKMS and BGCM directly
used the instance similarity matrix for applying the supervision
information. Lastly, this paper uses a modified version of the
EAC for combining the individual clustering results. EAC
applies a linkage method on a simple matrix, where the size
of this matrix is the number of algorithms × the number of
instances (T × n), where T << n in practice. By contrast,
some of the previous studies such as BGCM utilized the
graph methods for combining the individual results, where the
size of the adjacency matrix of the graph in these methods
is the square of the number of instances (n2). Based on
these technical issues, the proposed method can significantly
increase the performance of the final results as well as an
acceptable runtime.

V. CONCLUSION

In this paper, wisdom of crowds (WOC) theory in social
science was mapped to the clustering ensemble arena. The
main advantages of this mapping include the addition of
two new aspects, i.e., independency and decentralization, for
estimating the quality of individual clustering results, and
a new framework to investigate them. To reach the four
conditions of WOC, this paper incorporates a series of novel
strategies for producing individual clustering results as well
as obtaining the final ensemble result. Specifically, a mapping
function is introduced to perform independency on individual
clustering results. This function can minimize the correlation
between features by using the concepts of expected value
and covariance. The decentralization criterion is proposed for
transforming the data from high-dimension to low-dimension
based on pairwise constraints, to keep quality in the generated
individual clustering results. Further, this paper evaluates the
diversity of individual clustering results with a novel metric
called uniformity. At last, weighted EAC is proposed for the
final aggregation. To validate the effectiveness of the proposed
approach, an extensive experimental study is performed by
comparing with multiple state-of-the-art methods on various
data sets. In the future, we will develop a new version of
uniformity based on the concept of expected value instead of
using the APMM.
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