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Abstract—Clustering explores meaningful patterns in the
non-labeled data sets. Cluster Ensemble Selection (CES) is a
new approach, which can combine individual clustering results
for increasing the performance of the final results. Although
CES can achieve better final results in comparison with
individual clustering algorithms and cluster ensemble methods,
its performance can be dramatically affected by its consensus
diversity metric and thresholding procedure. There are two
problems in CES: 1) most of the diversity metrics is based
on heuristic Shannon’s entropy and 2) estimating threshold
values are really hard in practice. The main goal of this paper
is proposing a robust approach for solving the above mentioned
problems. Accordingly, this paper develops a novel framework
for clustering problems, which is called Weighted Spectral
Cluster Ensemble (WSCE), by exploiting some concepts from
community detection arena and graph based clustering. Under
this framework, a new version of spectral clustering, which is
called Two Kernels Spectral Clustering, is used for generating
graphs based individual clustering results. Further, by using
modularity, which is a famous metric in the community de-
tection, on the transformed graph representation of individual
clustering results, our approach provides an effective diversity
estimation for individual clustering results. Moreover, this
paper introduces a new approach for combining the evaluated
individual clustering results without the procedure of thresh-
olding. Experimental study on varied data sets demonstrates
that the prosed approach achieves superior performance to
state-of-the-art methods.

Keywords-cluster ensemble; spectral clustering; normalized
modularity; weighted evidence accumulation clustering

I. INTRODUCTION

Clustering, the art of discovering meaningful patterns in

the non-labeled data sets, is one of the main tasks in machine

learning. Generally, individual clustering algorithms provide

different accuracies in a complex data set because they

generate the clustering results by optimizing a local or

global function instead of natural relations between data

points in each data set. [1], [2]. As a novel solution, cluster

ensemble which combines the different clustering results

was proposed for achieving a better final result [1]. Cluster

Ensemble Selection (CES) is a new solution which com-

bines a selected group of best individual clustering results

according to consensus metric(s) from ensemble committee

in order to improve the accuracy of final results [3]. The

evaluation metric(s), thresholding and selection strategy, and

aggregation method are the most important challenges in

CES for selecting better partitions of ensemble committee

and generating the final result. There are a wide range of

ideas for solving mentioned challenges [3], [4], [5], [6],

[7]. Although these methods can improve performance and

robustness of final results, using a wide range of threshold

values and employing the entropy based metric are two

main weak points of this method. Threshold values are

different for each data set in the mentioned methods; and it is

really hard to find optimum values in real-world applications.

Moreover, most of the real-world data sets do not have

logarithm behavior. So, there is no prove that entropy

based methods, which estimate the diversity based on the

logarithm, were the best choice to evaluate the diversity. This

paper proposes a novel methodology for solving clustering

problems without mentioned weak points.

As mentioned before, there are four stages in Cluster En-

semble Selection (CES); i.e. generating individual clustering

results, evaluating, selecting and combining them as a final

clustering result. Although CES can achieve a better result in

comparison with individual clustering algorithms and cluster

ensemble methods, the accuracy of CES is fully sensitive to

the process of thresholding for selecting individual clustering

results, and the consensus metric, which is used for diversity

or quality estimation of the results. Unfortunately, it is

so hard to find the optimum threshold values in practice;

and most of the metrics, which were used for diversity or

quality estimation, are heuristic; especially they are based

on Shannons entropy. The main goal of this paper is solving

mentioned problems. This paper proposes a new method for

estimating the diversity of generated individual clustering

results by using a redefined version of modularity, which is

based on expected value and it is introduced for the commu-

nity detections applications. Further, this paper introduces

a novel approach for combining the evaluated individual

clustering results without the process of thresholding.

Our contribution in this paper can be summarized as

follows: Firstly, this study proposes a greedy method based

on feedback mechanism [8] which employs the idea of

bisecting k-means for generating individual results. After
that, this paper introduces the Two Kernels Spectral Clus-

tering (TKSC) for generating individual clustering results.
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This algorithm generates hybrid individual clustering results,

which contains Partitional results and Modular results. Same

as simple clustering problems, our method generates Parti-

tional results; and also it generates Modular results, which

represented by a graph, as a new alternative for evaluating

and combining the individual results. Next, to satisfy the

diversity criterion, this study proposes Normalized Modu-

larity, which is a redefined version of Modularity criterion

in community detection [9], for evaluating diversity of

individual results in the general clustering problems. Unlike

most of the diversity metrics which are based on Shannon’s

entropy, this metric uses Expected Value in probabilistic

theory for evaluating individual clustering results and avoids

the undesired logarithm [9], [10]. Lastly, this paper proposed

Weighted Evidence Accumulation Clustering (WEAC) to

obtain the final clustering with a weighted combination of

all individual results. While the weight of each individual

result in WEAC can be estimated with different metrics, the

normalized modularity was used in this paper.

The rest of this paper is organized as follows: In Section

2, this study first briefly reviews some related works on

cluster ensemble selection. Then, it introduces the proposed

Weighted Spectral Clustering Ensemble (WSCE) framework

in Section 3. Experimental results are reported in Section 4;

and finally this paper presents conclusion and pointed out

some future works in Section 5.

II. RELATED WORKS

As an unsupervised method, Clustering discovers mean-

ingful patterns in the non-labeled data sets. There is a

wide range of studies, which try to increase the perfor-

mance of clustering algorithms. For instance, Zhang et al.

introduced a multi-manifold regularized nonnegative matrix

factorization framework (MMNMF) which can preserve the

locally geometrical structure of the manifolds for multi-view

clustering [11]. Anyway, individual clustering algorithms

provide different accuracies in a complex data set because

they generate the clustering results by optimizing a local

or global function instead of natural relations between data

points in each data set [1], [2].

Generally, a cluster ensemble has two important steps:

Firstly, generating individual clustering results by using

different algorithms and changing the number of their par-

titions. Then, combining the primary results and generating

the final ensemble. This step is performed by consensus

functions (aggregating mechanism) [1], [12].

The idea that not all partitions are suitable for cooperating

to generate the final clustering was proposed in CES [3].

Instead of combing all achieved individual results, CES can

combine a selected group of best individual results according

to consensus metric(s) from the ensemble committee in

order to improve the accuracy of final results [3], [5], [8],

[4], [7]. Fern and Lin developed a method to effectively

select individual clustering results for ensemble and the final

decision [3]. Azimi et al. proved that diversity maximization

is not an effective approach in some real-world applications.

They explored that the thresholding procedure must be done

based on the complexity and quality of data sets [4]. Jia et

al. proposed SIM for diversity measurement, which works

based on the Normalized Mutual Information (NMI) [6].

Romano et al. proposed Standardized Mutual Information

(SMI) for evaluating clustering results [13].

Yousefnezhad et al. introduced independency metric in-

stead of quality metric for evaluating the process of solving

a problem in the CES [7]. Alizadeh et al. have concluded

the disadvantages of NMI as a symmetric criterion. They

used the APMM1 and Maximum (MAX) metrics to measure

diversity and stability, respectively, and suggested a new

method for building a co-association matrix from a subset

of base cluster results [5], [8]. Alizadeh et al. introduced

Wisdom of Crowds Cluster Ensemble (WOCCE), which

is a novel method base on a theory in social science [8].

Although, this method can generate high performance and

more stable results in comparison with other CES methods,

using a wide range of thresholds and employing different

types of clustering algorithms for generating individual

results are two main problems in this method. Alizadeh et al.

used A3, which is based on Shannon’s entropy, for diversity

evaluation; and Basic Parameter Independency (BPI), which

uses initialized values of individual clustering algorithms

such as random seeds in the first iterative of k-means, for

independency evaluation. In addition, they introduced the

feedback mechanism for generating the high-quality results

[8].

As a graph based clustering methods, spectral clustering

generates high-performance results when it is applied to dif-

ferent applications; i.e. from image segmentation to commu-

nity detection arena. Kuo et al. introduced a new method for

automating the process of Laplacian creation in the medical

applications; especially for fMRI segmentation where this

method used standard Laplacians perform poorly [14]. Chen

et al. proposed a clustering algorithm which is based graph

clustering and optimizing an appropriate weighted objective,

where larger weights are given to observations (edge or no-

edge between a pair of nodes) with lower uncertainty [15].

Gao et al. introduced a graph-based consensus maximization

(BGCM) method for combining multiple supervised and

unsupervised models. This method consolidated a classifi-

cation solution by maximizing the consensus among both

supervised predictions and unsupervised constraints [16].

III. THE PROPOSED METHOD

Given a set of high-dimensional data examples X̂ =
{x̂1, x̂2, . . . , x̂n}. The simple average of X̂ can be denoted

1Alizadeh-Parvin-Moshki-Minaei
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as follows:

X̄ =
1

n

n∑
i=1

x̂i (1)

where n is the number of instances in the X̂; and x̂i denotes

the i − th instance of the data points. At the beginning,

this paper minimized the correlation between features. So,

it denotes X as follows:

X = X̂ − X̄ = {(x̂1− x̄1), (x̂2− x̄2), . . . , (x̂n− x̄n)} (2)

where X̂ is the data points, and X̄ denotes simple average of

X̂ , which calculated by (1). It’s clear that X is zero-mean.

In other words, the excepted value of X is zero as follows:

E{X} = 0 (3)

Now, this paper maps Q : X ∈ R
m×n → Y ∈ R

m×n, where

m, n denote the number of features and data points, respec-

tively. This mapping just minimizes the correlation between

features. This problem can be reformulate as follows:

Y = QTX (4)

If the correlation (covariance) of X is considered R =
E{XXT } = 1

n

∑n
i=1 xix

T
i , then the correlation of Y will

be defined as follows:

E{Y Y T } = E{(QTX)(QTX)
T } =

E{QTXXTQ} = QT
E{XXT }Q = QTRQ

(5)

Based on above definition, the expected value of j − th
feature of X denotes as follows:

E{YjY
T
j } = qTRq (6)

where q denotes the j − th index of the Q. In other words,

our correlation problem is changed to a variance probe. Now,

maximizing the q based on the variance of X will be omitted

the correlation between features. Since the scale of data after

mapping must be same, we assume following equation:

‖q‖ = 1 (7)

For maximizing the (6), which is denoted by Ψ(q), our

problem will be reformulated as follows:

max[Ψ(q) = qTRq]⇒
∂Ψ(q)

∂q
= 0⇒

Ψ(q + δq) = Ψ(q)⇒
(q + δq)

T
R(q + δq) = qTRq

(8)

where the symbol δq is an abbreviation for ‘a small change

in q’. We consider (δq)T δq ≈ 0, so the above definition

denotes as follows:

(δq)TRq = 0 (9)

Based on (7) and (8), we can assume as follows:

‖δq − q‖ = ‖q‖ = 1⇒ (δq)T q = 0 (10)

Now, this paper defines following equation by using (9) and

(10):

(δq)TRq − λ(δq)T q = 0⇒
(δq)T [Rq − λq] = 0

(11)

where λ ∈ R is a constant. Since (δq)T �= 0, the following

equation must be satisfy for minimizing correlation between

features:

Rq = qλ (12)

where R and λ denotes the eigenvectors and eigenvalues,

respectively. For all features of X the above equation will

be denoted as follows:

RQ = QΛ (13)

which is called eigenstructure equation. In above equation, Λ
is a diagonal matrix. Based on (7), we can define following

equation:

‖q‖2 = 1⇒ QTQ = I (14)

where I is identity matrix. Following equation denotes based

on (13) and (14):

RQ = QΛ⇒
RQQT = QΛQT ⇒
RI = QΛQT ⇒
R = QTΛQ⇒

R =

m∑
j=1

λjqiq
T
j

(15)

where m denotes number of features in data X . Now,

consider that R is a descending order based on Λ values.

For an optional feature selection we can define the following

equation instead of (15):

R =

d∑
j=1

λjqiq
T
j (16)

where d < m is the number of features, which must

be selected for generating results. Algorithm 1 shows the

mapping function, which can minimized correlation of data

set based on above definitions.

For generating individual clustering results, the proposed

method partitions Y into Cl clusters, where k denotes

number of clusters in the individual results, and Cl is

l − th individual result in the reference set. This paper

uses the range of l ∈ [2 , k + 2 ] for generating individual

results, where k is the number of clusters in the final

result. This is the same as bisect k-means algorithms but

instead of applying the algorithm on generated results in

each iterative, our proposed method stores this result on

the ensemble committee; and then evaluates and combines

these results. In other words, the reference set denotes

ζ ∈ R
n×[2,k+1] = {Cl} = {C2, . . . , Ck+2}.
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Algorithm 1 The Mapping Function

Input: Data set X̂ ∈ R
m×n = {x̂1, x̂2, . . . , x̂n},

d as number of features:

d = 0 is considered for deactivating the feature
selection
Output: Mapped data set Y
Method:

1. Calculating simple average X̄ by using (1).

2. Calculating X by using (2).

3. Calculating R = E{XXT } = 1
n

∑n
i=1 xix

T
i .

4. Calculating Λ and Q as eigenvalues/vectors of R.

5. Sorting Q based on descending values of λ.

6. if d is not zero (d �= 0)

then selecting [1, d] features of Q, and sorting as Qd,

else Qd = Q, d = m.

end if
7. Return Y = QT

d X .

Like other spectral methods, this paper calculates the

non-symmetric distances (adjacency) matrix of Y , which

is denoted by A [17], [18]. In the rest of this paper, our

proposed method will be applied to the matrix A for each

individual clustering results. Moreover, this paper uses (17)

as transform function for converting distances matrix A to

similarity matrix S. This transformation can optimize the

memory usage [17], [18].

Si,j =

{
exp

(−‖yi−yj‖2
φ2

)
if i �= j

0 if i = j
(17)

where yn denotes the n− th data point and ‖yi − yj‖2 will

be calculated by Euclidean distance. The scaling parameter

φ controls how rapidly affinity Si,j falls off with the distance

between the data points. This paper uses Ng et al. method for

estimating this value automatically (count non-zero values in

each columns of distance matrix A) [17], [18].

This paper introduces Two Kernels Spectral Clustering

(TKSC) algorithm, which can generate all individual results

(ζ). Unlike normal clustering algorithms, which just generate

a partition as the result, the TKSC algorithm generates two

independent consequences, which are called Partitional re-

sult and Modular result, for each of the individual clustering

results by using two kernels (Cl = {P l,M}). Partitional

result (P l) is a partitioning of data points same as the result

of other clustering methods; and Modular result (M ) is a

network of data points, which can be represented by a graph.

This paper uses Modular result as a reference for evaluating

the diversity of generated partition by using community de-

tection methods [9], [10]. Furthermore, kernel in the TKSC

refers to Laplacian equation in spectral methods because it

transforms data points in new environment, especially linear

environment for non-linear data sets.

Partitional Kernel: This paper uses following equation

for generating Partitional result:

LP = I−D1/2SD1/2 (18)

where I is the identity matrix [17]; D is the diagonal matrix

of S (D = diag(S)); and S will be calculated by (17). As

shows in follows, the eigendecomposition is performed for

calculating eigenvectors of LP :

V = eigens(LP ) (19)

where the matrix V is the eigenvectors of Partitional Kernel.

The coefficient W will be defined for normalizing the matrix

V :

Wi =

(
n∑

i=1

Vi1 × Vi2

) 1
2

+ ε (20)

where Vij shows the i-th row and j-th column of the matrix

V ; and ε is used for omitting the effect of zeros in the

matrix W . This paper uses ε = 10−20 for generating

the experimental results. Also, n denotes the number of

instances in the data set (W ∈ R
n). The normalized matrix

of eigenvectors will be calculated as follows:

Uij = Vij ×Wi (21)

where Uij and Vij denote the i-th row and j-th column of

these matrices; and Wi is the i-th row of the matrix W
which is used for normalization. The Partitional result of

TKSC will be calculated by applying the simple k-means

[8] on the matrix U as follows:

P l = kmeans(U, l) (22)

where K is the number of classes in individual results; and

U will be calculated by (21).

Modular Kernel: This paper uses following equation for

generating Modular result:

LM = D − S (23)

where D is the diagonal matrix of S (D = diag(S));
and S will be calculated by (17). This paper considers the

normalized matrix of LM an adjacency matrix of graph

representation of individual result as follows:

M =
1

max(LM )
LM (24)

where LM is calculated by (23), and the function max finds

the biggest value in the matrix LM . Further, all values in

the matrix M , which is called Modular result, are between

zero and one. Algorithm 2 shows the pseudo code of the

TKSC method. Tracing errors can control similarity and

repetition of specific answers in clustering problems. There

is a wide range of metrics, which are based on Shannon’s

entropy[8], [5], for evaluating the diversity of individual

results in the CES methods, such as MI [1], NMI [12],

APMM [5], MAX [8], and SMI [13]. Shannon’s entropy

uses the logarithm of probability of individual results for
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Algorithm 2 Two Kernels Spectral Clustering (TKSC)

Input: Distance matrix A, Number of clusters l
Output: Partitional result P l, Modular result M
Method:

1. Generate similarity matrix S by using A on (17).

2. Generate diagonal matrix D by using S.

3. Generate LP by applying S and D on (18).

4. Generate LM by using S and D on (23).

5. Generate the matrix V as eigenvectors of Lp.

6. Generate U as normalized V by using (20) and (21).

7. Generate M by applying LM on (24).

8. P l = kmeans(U, l)
9. Return P l and M

evaluating the diversity but there is no mathematical prove

that all real-world data sets have logarithmic behavior. In

community detection arena [9], [10], Modularity, which is

based on Expected Value, was proposed for solving this

problem. Recently, many papers proved that modularity [9],

[10] can estimate the diversity on graph data sets better

than entropy based methods. Unfortunately, modularity can

measure the diversity only for graph data [9]. This paper

proposes TKSC, which can generate a graph based result,

called Modular result, for any types of data sets in real-world

application. Since modularity was defined for community

detection arena, this paper introduces a redefined version of

modularity metric for general clustering problems, which

is called Normalized Modularity (NM ). It is used for

evaluating the diversity of the individual results based on

Modular result of the TKSC as follows:

NM(P l,M) =
1

2
+

1

4z

∑
ij

[
Γij − σiσj

2z

]
Θ(ci, cj) (25)

where P l and M are calculated by (22) and (24), respec-

tively; z is sum of all cells in the matrix M (z =
∑

M Mij);

and ci and cj are the cluster’s numbers of the i-th and j-th

instances in the Partitional result P l. Also, σi and σj show

the degree of i-th and j-th nodes in the graph of matrix M
(How many rows contains non-zero value in the columns i
or j). In addition Γij and Θ(ci, cj) will be calculated as

follows:

Γij =

{
0 if Mij = 0
1 Otherwise (26)

Θ(ci, cj) =

{
1 if ci = cj
0 Otherwise (27)

This diversity evaluation is 0 ≤ NM ≤ 1. In the rest

of this section, we describe how NM will be used for

evaluating individual clustering results. Thresholding is used

for selecting the evaluated individual results in the CES.

Then co-association matrix is generated by using consensus

function on the selected results. Lastly, the final result is

generated by applying linkage methods on the co-association

Figure 1. In the traditional EAC, the α(i,j) represents the number of
clusters shared by objects with indices (i, j); and β(i,j) is the number
of partitions in which this pair of instances (i and j) is simultaneously
presented. This method assumes the weights of all individual clustering
results (α(i,j)) are the same. This paper proposes Weighted EAC for
optimizing this method by using a weight for each individual clustering
results instead of just counting their shared clusters. While the weight can
have different definitions in the other applications, this paper uses average
of Normalized Modularity (NM) of two algorithms as the weight in the
WEAC (ᾱ(i,j) =

∑
α(i,j) ρi,j ).

matrix. These methods generate the Dendrogram and cut

it based on the number of clusters in the result [12], [8].

In recent years, many papers have used EAC as a high-

performance consensus function for combining individual

results [12], [5], [8], [4], [3]. EAC uses the number of

clusters shared by objects over the number of partitions

in which each selected pair of objects is simultaneously

presented for generating each cell of the co-association

matrix. Figure 1 illustrates the effect of the EAC equation

(c (i, j) = α(i,j)
β(i,j) ) on the shape of Dendrogram. Where α(i,j)

represents the number of clusters shared by objects with

indices (i, j); and β(i,j) is the number of partitions in which

this pair of instances (i and j) is simultaneously presented.

As a matter of fact; EAC considers that the weights of all

algorithms results are the same. Instead of counting these

indices, this paper uses following equation, which is called

Weighted EAC (WEAC), for generating the co-association

matrix.

c (i, j) =

∑
α(i,j) ρi,j

β (i, j)
(28)

where α (i, j) and β (i, j) are same as the EAC equation;

Also, ρi,j is the weight of combining the instances. Although

this weight can have different definitions in the other appli-

cations, this paper uses average of Normalized Modularity of

two algorithms as follows for combining individual results:

ρij =
1

2
(NM i +NM j) (29)

where NM i and NM j illustrates the Normalized Mod-

ularity of the algorithms, which generate the results for

indices i and j. In other words, as a new mechanism, this

paper generates the effective results when both algorithms
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have high NM values; and also the effects of individual

results are near of zero when the both algorithms have

small values in the NM metric. As a result, this paper

just omits the effect of low quality individual results by

using mentioned mechanism instead of selecting them by

thresholding procedures. Further, the final co-association

matrix, which is a symmetric matrix, will be generated by

(28) as follows:

ξ =WEAC(ζ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c(1, 1) c(1, 2) . . . c(1, n)
c(2, 1) c(2, 2) . . . c(2, n)

...
...

...
...

c(i, 1) c(i, 2) c(i, j) c(i, n)
...

...
...

...

c(n, 1) c(n, 2) . . . c(n, n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(30)

where n is the number of data points; and c(i, j) denotes the

final aggregation for i− th and j− th instances. Algorithm

3 illustrates the pseudo code of the proposed method. In this

algorithm, X̂ is the data set; k is the number of clusters in

the final result; Pf is the final result partition. The distances

are also measured by an Euclidean metric. The TKSC

function builds the partitions and modules of individual

results; and NM function evaluates these results by using

(25). Then, the evaluated results will be added to reference

set. The WEAC function generates the co-association matrix,

according to (28), by using the Normalized Modularity

values and Partitional results. The Average-Linkage function

creates the final ensemble according to the average linkage

method [5], [8].

Algorithm 3 The Weighted Spectral Cluster Ensemble

Input:
Data points X̄ ,

Number of clusters k,

Number of features d.

Output: final result Pf

Method:
1. Generate Y by using X̄ and d on Algorithm 1.

2. Generate matrix A by using Y based on [17].

3. for l = 2 to k + 2 do
4.

[
P l,M

]
= TKSC (A, l) by using Algorithm 2.

5. Q = NM(P l,M) based on (25)

6. Add [P,Q] to ζ as the reference set.

7. end for
8. Generate co-association matrix ξ =WEAC(ζ)
9. Pf = Average− Linkage(ξ)

IV. EXPERIMENTS

The empirical studies will be presented in this section. The

unsupervised methods are used to find meaningful patterns

in non-labeled datasets such as web documents, etc. in real

world application. Since the real dataset doesnt have class

labels, there is no direct evaluation method for estimating the

performance in unsupervised methods. Like many pervious

researches [12], [3], [5], [8], [7], this paper compares the

performance of its proposed method with other individual

clustering methods and cluster ensemble (selection) methods

by using standard datasets and their real classes. Although

this evaluation cannot guarantee that the proposed method

generate high performance for all datasets in comparison

with other methods, it can be considered as an example for

analyzing the probability of predicting good results in the

WSCE.

The results of the proposed method are compared with

individual algorithms k-means [8] and Maximum Likelihood

Estimator (MLE) [15], as well as APMM [5], WOCCE

[8], SMI [13], and BGCM [16] which are state-of-the-art

cluster ensemble (selection) methods. This paper reported

the empirical results of k-means algorithm as one of the

classical clustering methods. Furthermore, as a new alter-

native in the clustering methods, the empirical results of

the proposed method are compared with the MLE, SMI,

and BGCM methods. Also, this paper uses the unsupervised

version of BGCM method (with the null set of supervision

information). For representing the effect of Uniformity on

the performance of the final results, it compares with two

state-of-the-art metrics in diversity evaluation (APMM and

SMI). The last but not least, the experimental results of this

paper are compared with the WOCCE as another method

in the CES, which uses the independency estimation. All of

these algorithms are implemented in the MATLAB R2015a

(8.5) by authors2 in order to generate experimental results.

All results are reported by averaging the results of 10

independent runs of the algorithms which are used in the

experiment. Also, the number of individual clustering results

in the reference set of the ensemble is set as 20 for all of

mentioned algorithms in all of experiments on a PC with

certain specifications3.

A. Data Sets

This paper uses three different groups of data sets for

generating experimental results; i.e. image based data sets,

document based data sets and others. Table I illustrates the

properties of these data sets. This paper uses the USPS

digits data set, which is a collection of 16 × 16 gray-scale

images of natural handwritten digits and is available from

[19]. Furthermore, this paper uses Alzheimer’s Diseases

Neuroimaging Initiative (ADNI) data set for 202 subjects

as another image based real-world data set. This data set

contains MRI and PET images from human Brian in two

categories (which are shown by C1 and C2 in the Table I

2The proposed method is available
http://sourceforge.net/projects/myousefnezhad/files/WSCE/

3Apple Mac Book Pro, CPU = Intel Core i7 (4*2.4 GHz), RAM = 8GB,
OS = OS X 10.10
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Table II
THE PERFORMANCE OF CLUSTERING ALGORITHMS. FURTHER, THE OPTIONAL FEATURE SELECTION IS NOT USED FOR THE PROPOSED METHOD

(d = 0).

Data Sets Spectral MLE APMM WOCCE SMI BGCM WSCE
20 Newsgroups 14.31±2.14 21.89±1.02 28.03±0.87 32.62±0.52 29.14±0.91 40.61±0.83 52.06±0.17
ADNI-MRI-C1 39.24±0.21 39.84±0.42 48.01±0.56 48.82±0.37 50.69±0.69 45.54±0.99 49.53±0.19
ADNI-MRI-C2 32.72±0.98 26.32±0.67 39.93±0.29 40.22±0.44 38.32±0.41 42.62±1.04 41.14±0.71
ADNI-PET-C1 43.71±0.52 37.96±0.87 48.37±0.82 49.19±0.26 49.45±0.62 42.1±0.78 52.05±0.37
ADNI-PET-C2 37.27±0.23 37.91±0.83 38.53±0.17 39.43±0.79 41.76±0.47 39.1±1.2 43.11±0.42
ADNI-FUL-C1 42.63±0.63 42.62±0.58 47.22±0.93 48.82±0.41 47.93±0.83 48.56±1.26 49.06±0.36
ADNI-FUL-C2 39.51±1.19 41.06±0.17 50.09±0.35 49.39±0.63 49.16±0.26 46.91±0.42 50.11±0.09
Arcene 58.31±1.22 64.19±0.498 66.28±0.216 65.16±0.32 67.14±0.93 64.23±0.28 73.34±0.92
Bala. Scale 49.21±0.87 52.76±0.12 52.65±0.63 54.88±0.61 59.98±0.812 59.62±0.32 61.64±0.12
Breast Can. 94.88±1.14 82.65±0.342 96.04±0.88 96.92±0.77 80.87±0.652 99.12±0.62 99.21±0.43
Bupa 56.72±1.18 53.98±0.274 55.07±0.28 57.02±0.46 58.49±0.21 53.17±0.21 60.93±0.09
CNAE-9 65.32±0.43 77.72±0.591 77.42±0.792 79.2±0.579 74.25±0.614 80.12±0.459 88.42±0.02
Galaxy 31.24±0.67 34.25±0.872 33.72±0.36 35.88±0.81 35.21±0.413 36.91±0.17 39.89±0.82
Glass 45.78±0.87 50.32±0.42 47.19±0.21 51.82±0.92 54.19±0.144 53.66±0.98 55.19±0.51
Half Ring 80.61±1.15 73.91±0.762 80±0.42 87.2±0.14 71.19±0.621 98.37±0.59 99.92±0.08
Ionosphere 69.71±0.67 25.67±0.53 70.94±0.13 70.52±0.132 70.87±0.226 73.67±0.341 76.25±0.28
Iris 83.45±0.82 89.02±0.61 74.11±0.25 92±0.59 93.79±0.21 97.29±0.09 96.53±0.32
Optdigit 54.19±0.45 73.81±0.69 77.1±0.841 77.16±0.21 80.21±0.79 71.56±0.692 82.82±0.33
Pendigits 53.94±0.25 59.36±0.31 47.4±0.699 58.68±0.18 63.74±0.37 63.13±0.42 65.02±0.91
Reuters-21578 48.78±3.19 52.58±1.92 65.23±0.62 68.85±0.32 62.92±1.02 71.69±0.51 78.34±0.15
SA Hart 69.59±0.08 61.69±0.44 70.91±0.42 68.7±0.46 70.05±0.51 73.92±0.72 72.8±0.82
Sonar 53.24±0.62 54.93±0.26 54.1±0.91 54.39±0.25 57.64±0.47 52.06±0.873 61.29±0.11
Statlog 42.87±0.62 52.35±0.79 54.88±0.528 55.77±0.719 53.73±0.52 55.76±0.591 57.92±0.26
USPS 62.67±0.13 59.72±0.62 63.91±0.94 65.21±0.69 68.73±0.66 65.38±1.02 70.37±0.01
Wine 73.09±1.38 83.81±0.41 64.6±0.231 71.34±0.542 88.46±0.71 87.34±0.24 90.44±0.02
Yeast 32.96±0.71 30.49±0.63 31.06±0.245 32.76±0.268 35.19±0.57 28.12±0.462 36.92±0.81

Table I
THE STANDARD DATA SETS

Data Set Instances Features Class
20 Newsgroups 26214 18864 20
ADNI-MRI-C1 202 93 3
ADNI-MRI-C2 202 93 4
ADNI-PET-C1 202 93 3
ADNI-PET-C2 202 93 4
ADNI-FUL-C1 202 186 3
ADNI-FUL-C2 202 186 4
Arcene 900 10000 2
Bala. Scale 625 4 3
Brea. Cancer 286 9 2
Bupa 345 6 2
CNAE-9 1080 857 9
Galaxy 323 4 7
Glass 214 10 6
Half Ring 400 2 2
Ionosphere 351 34 2
Iris 150 4 3
Optdigit 5620 62 10
Pendigits 10992 16 10
Reuters-21578 9108 5 10
SA Hart 462 9 2
Sonar 208 60 2
Statlog 6435 36 7
USPS 9298 256 10
Wine 178 13 2
Yeast 1484 8 10

and II) for recognizing the Alzheimer diseases. In the first

category, this data set partitions subjects to three groups of

Health Control (HC), Mild Cognitive Impairment (MCI),

and Alzheimer’s Diseases (AD). In the second category,

there are four groups because the MCI will be partitioned

to high and low risk groups (HMCI/LMCI). This paper

uses all possible forms of this data set by using only MRI

features, only PET features and all of MRI and PET features

(FUL) in each of two categorize. More information about

ADNI-202 is available in [20]. As a document based data

set, the 20 Newsgroups is a collection of approximately

20,000 newsgroup documents, partitioned (nearly) evenly

across 20 different newsgroups. Some of the newsgroups are

very closely related to each other, while others are highly

unrelated. It has become a popular data set for experiments

in text applications of machine learning techniques, such as

text classification and text clustering. Moreover, the Reuters-

21578 is one of the most widely used test collections for

text classification research. This data set was collected and

labeled by Carnegie Group, Inc. and Reuters, Ltd. We use the

10 largest classes of this data set. The rest of standard data

sets are from UCI [21]. The chosen data sets have diversity

in their numbers of clusters, features, and samples. Further,

their features are normalized to a mean of 0 and variance of

1, i.e. N (0, 1).
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Figure 2. The effect of noisy data sets on the performance.
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(b) CNAE-9

Figure 3. The effect of missed-values on the performance.

B. Performance analysis

In this section the performance (accuracy metric [8]) of

proposed method will be analyzed. In other words, the

final clustering performance was evaluated by re-labeling

between obtained clusters and the ground truth labels and

then counting the percentage of correctly classified samples

[8]. The results of the proposed method are compared

with individual algorithms Spectral clustering[17] and MLE

[15], as well as APMM [5], WOCCE [8], SMI [13], and

BGCM [16] which are state-of-the-art cluster ensemble

(selection) methods. The main reason for comparing the

proposed method with Spectral clustering is to show the

effect of TKSC framework on the performance of the final

results. Furthermore, as a new alternative in the graph

based clustering methods, the empirical results of WSCE

are compared with the MLE and BGCM methods. This

paper uses the unsupervised version of BGCM method (with

the null set of supervision information). For representing

the effect of Normalized Modularity on the performance

of the final results, it compares with three state-of-the-

art metrics in diversity evaluation (A3, APMM and SMI),

which are based on Shannons entropy. This paper doesn’t

use optional feature selection in this section (d = 0). The

experimental results are given in Table II. In this table, the

best result which is achieved for each data set is highlighted

in bold. As depicted in this table, although individual cluster-

ing algorithms (Spectral and MLE) have shown acceptable

performance in some data sets, they cannot recognize true

patterns in all of them. As mentioned earlier in this paper,

in order to solve the clustering problem, each individual

algorithm considers a special perspective of a data set which

is based on its objective function. The achieved results

of individual clustering algorithms, which are depicted in

556556



Table II are good evidence for this claim. Furthermore, the

results generated by APMM, SMI, and WOCCE show the

effect of the aggregation method on improving accuracy

in the final results. According to Table II, BGCM and the

proposed algorithm (WSCE) have generated better results in

comparison with other individual and ensemble algorithms.

Even though the proposed method was outperformed by a

number of algorithms in four data sets (Iris, SA Hart, and

ADNI-MRI-C1/C2), the majority of the results demonstrate

the superior accuracy of the proposed method in comparison

with other algorithms. In addition, the difference between

the performance of proposed method and the best result in

those four data sets is lower that 2%.

C. Noise and missed-values analysis

The effect of noise and missed-values on the performance

of clustering algorithms will be discussed in this section. The

optional feature selection for the proposed method doesn’t

use in this section (d = 0). In Figure 2, the effect of noise in

the features of data sets will be analyzed on the performance

of proposed method. This figure represents the performance

of the WSCE, WOCCE, BGCM, SMI, and APMM on

the noisy data sets. In this experiment, some features of

Arcene and CNAE-9 data sets are randomly changed. This

figure shows that proposed method generates more stable

results because the Normalized Modularity provides a robust

diversity evaluation for selecting most stable individual

results. As mentioned before, Shannon’s entropy uses the

logarithm of probability of individual results for evaluating

the diversity but there is no mathematical prove that all real-

world data sets have logarithmic behavior. This experiment

is the best evidence for this claim. Figure 3 demonstrates

the analysis for the effect of missed-values in the data sets

on the performance of clustering algorithms. This figure

illustrates the performance of the WSCE, WOCCE, BGCM,

SMI, and APMM on the data sets with missed-values. In

this experiment, some values of attributes of Arcene and

CNAE-9 data sets are randomly missed (set null). As you

can see in this Figure, the proposed method and BGCM

generate more stable results. This is a new advantage of

our proposed method in comparison other non-graph based

methods. Since, our proposed method uses the TKSC algo-

rithms for generating Partitional and Modular results, it can

significantly handle the miss values. In other words, as a

local error in the individual results, a missed-value just can

destroy an edge in our Modular result, which can be rec-

ognized by comparing Modular result with Partitional result

in the diversity evaluation by using the NM metric. That is

another reason for exploiting the proposed framework in the

clustering problems.

D. Parameter analysis

In this section the performance of the proposed method

will be analyzed by using the optional features selection
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Figure 4. The effect of optional features selection on the performance of
proposed method.

(d parameter). This paper employs various data sets, i.e.

two low dimension data sets (Wine, Glass), two high-

dimension data sets (20 Newsgroups, Arcene), and two

middle-dimension and also image based data sets (USPS,

ADNI) for analyzing the performance of proposed method.

Figure 4 illustrates the relationship between the performance

of the proposed method based on the percentage of selected

features in different data sets. The vertical axis refers to

the performance while the horizontal axis refers to the

percentage of selected feature in each data set. As you

can see in this figure, the optional feature selection can

significantly increase the performance of final results on

high-dimensional data sets; and also it can dramatically

decrease the performance on low-dimensional data sets.

Further, it is not more effective on the middle-dimension data

sets. This paper offers that the optional features selection

will be used only for high-dimensional data sets for handling

features-sparsity.

V. CONCLUSION

There are two challenges in Cluster Ensemble Selection

(CES); i.e. proposing a robust consensus metric(s) for diver-

sity evaluation and estimating optimum parameters in the

thresholding procedure for selecting the evaluated results.

This paper introduces a novel solution for solving mentioned

challenges. By employing some concepts from community

detection arena and graph based clustering, this paper pro-

poses a novel framework for clustering problems, which is

called Weighted Spectral Cluster Ensemble (WSCE). Under

this framework, a new version of spectral clustering, which

is called Two Kernels Spectral Clustering (TKSC), is used

for generating graphs based individual clustering results;

i.e. Partitional result and Modular result. Instead of entropy

based methods in the traditional CES, this paper introduces

Normalized Modularity (NM), which is a redefined version

of modularity in the community detection arena for general
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clustering problems. The NM is used on the transformed

graph representation of individual clustering results for

providing an effective diversity estimation. Moreover, this

paper introduces a new solution for combining the evaluated

individual clustering results without the procedure of thresh-

olding, which is called Weighted Evidence Accumulation

Clustering (WEAC). While the weight of each individual

result in WEAC can be estimated with different metrics, the

NM was used in this paper. To validate the effectiveness of

the proposed approach, an extensive experimental study is

performed by comparing with individual clustering methods

as well as cluster ensemble (selection) methods on a large

number of data sets. Results clearly show the superiority

of our approach on both normal data sets and those with

noise or missing values. In the future, we plan to develop

a new version of normalized modularity for estimating the

diversity of Partitional results, directly.
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