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Abstract. Understanding how human brain works has attracted in-
creasing attentions in both fields of neuroscience and machine learn-
ing. Previous studies have used autoencoder and generative adversarial
networks (GAN) to improve the quality of perceived image reconstruc-
tion from functional Magnetic Resonance Imaging (fMRI) data. However,
these methods mainly focus on acquiring relevant features between stim-
uli images and fMRI while ignoring the time-series information of fMRI,
thus leading to sub-optimal performance. To address this issue, in this
paper, we develop a time-series information guided GAN method for
reconstructing visual stimuli from human brain activities. In addition,
to better measure the modal difference, we leverage a pairwise ranking
loss to rank the stimuli images and fMRI to ensure strongly associated
pairs at the top and weakly related ones at the bottom. Experimental
results on real-world datasets suggest that the proposed method achieves
better performance in comparison with several state-of-the-art image re-
construction approaches.

Keywords: Perceived image reconstruction · functional Magnetic Reso-
nance Imaging (fMRI) · Long-Short Term Memory (LSTM) · generative
adversarial networks (GAN).

1 Introduction

“Reading minds” has been one of the most significant challenges in the field of
neuroscience in the past for a long time [1,2]. To this end, an algorithm called
the human brain encoding and decoding has been proposed, where the encoding
part embeds information into neural activities, while the decoding part extracts
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information from neural activities [3]. Functional Magnetic Resonance Imaging
(fMRI) is one of the most popular tools for studying the human brain, using
blood oxygen level dependence (BOLD) signals as a proxy for visual neural
activity. The main idea is to use these measurements of neural activities to
process cognitive state [4,5].

Recent years, several deep neural network based methods have been proposed
for decoding the cognitive states in human brains. For instance, some studies use
the outputs of DNN to reveal the neural activities in human visual cortex [6,7,8].
However, there are still some challenges for the perceived image reconstruction
from human brain activity with fMRI. In particular, 1) fMRI data is usually high-
dimensional with a lot of complex noises, which interferes with the mining of real
brain activity and influences the reconstruction results; 2) the pairwise samples
are treated as time point samples, which ignores the time-series information
of the visual task; 3) the limited mapping between the stimuli images and the
evoked brain avtivity patterns, which fails to correctly assess the correlation
between the two cross-modal data.

To address these issues, in this paper, we propose a novel visual stimuli
reconstruction method based on LSTM and GAN. Specifically, there are three
components in our method to solve the challenges mentioned before. The first
part is the stimuli images encoder, which is used for mapping the stimuli imag.es
to a latent space through deep neural network. The second part is a LSTM
network, used for fMRI feature mapping to extract time-series information from
fMRI. The last part is the discriminator for stimuli image generation, which
generates the images as similar as the original input images. We also employ
the pairwise ranking loss [9] to encourage the similarity of ground truth caption-
image pairs to be greater than that of all other negative ones.

The major contributions of this paper are two folds. First, we propose a novel
method to reconstruct the visual images from the evoked fRMI data. A time-
series information guided GAN method is proposed to capture the time-series
information in fMRI data via LSTM network and complete the task of stimuli
image reconstruction through GAN. Second, we introduce a pairwise ranking loss
to measure the relationship between the stimuli images and fMRI signals. This
loss function ranks the stimuli images and fMRI that ensure strongly associated
(corresponding) is at the top and weakly correlated at the bottom.

2 Proposed Method

2.1 Notations

Let N be the number of images which we used in the visual stimuli task, and
D denotes the dimensions of stimuli images. Suppose X = {xpq} ∈ RN×D, p =
1 : N, q = 1 : D denotes the stimuli images. At the same time, the preprocessed
fMRI time series for S subjects is denoted by Y = {ymn} ∈ RTf×V ,m = 1 :
Tf , n = 1 : V , where Tf is the number of time points in units of TRs (Time of
Repetition), V is the number of voxels, and ymn denotes the functional activity
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Fig. 1. The schematic diagram of time-series information guided GAN method

for the subject in the m-th time point and the n-th voxel. As proposed method is
a cross-modal data reconstruction task, the samples are pairwise, which is saying
that the number of the samples is T , and T = N = Tf . Here, for convenience,
we let (xt, yt) be a pairwise sample at time point t, t = 1, 2, . . . , T .

2.2 Time-series Information Guided GAN

We develop a time-series information guided GAN method for modeling the
relationships between the visual stimuli (images) and the evoked fMRI activ-
ity patterns. Our method generates two different modals from a shared latent
space, via the two-view specific generative model and a discriminative model.
The schematic diagram of the proposed method is shown in Fig.1. There are
three sub-networks in the proposed model, i.e., 1) a image encoder for map-
ping the stimuli images into latent space, 2) a LSTM generator for fMRI feature
mapping, and 3) a discriminator for image reconstruction.

Stimuli Images Autoencoder: Due to only a small number of sample can be
used to train the network for stimuli image reconstruction task, we pretrain an
autoencoder to improve the performance. The pretrained encoder network is
employed to map the stimuli images into a latent representation. Herein, in the
cross-modal reconstruction model, the image encoder can map the features of
visual stimuli into the image latent space zi, where the latent feature zit = fθ(xt).
Here f(·) is the encoder function, θ is the parameters in the encoder. While the
decoder network reconstructs the original input image x̂t = gφ(zit) by using
the nonlinear function g(·), where φ is the parameters in the decoder. The loss
function of the autoencoder can be defined as follows:

min
θ,φ

1

T

T∑
t=1

‖xt − gφ(fθ(xt))‖2F , (1)

LSTM Network for fMRI Feature Mapping: The fMRI generator produces an
output image ŷt given the corresponding neural response in sequential order
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yt, t ∈ 1 · · ·T . Here, the generated image ŷt is as similar as possible to the
reconstructed image in the next step ˆyt+1. Therefore, the generator should be
a sequential LSTM model, which produces the sequentially next image, ŷt =
L(y1, y2, · · · , yt), t = 1, 2, . . . , T . The LSTM network maps the fMRI signals into
the fMRI latent space zf , where the latent feature ŷt = L(yt), t = 1, 2, . . . , T .
Here, L(·) defines the LSTM network mapping.

Discriminator for Stimuli Image Generation: We use two loss components to
compute the loss between G(zit) and xt on the basis of features from the trained
deep neural networks. For the first component, which we refer to [12], is feature
reconstruction loss Lf , which determines whether features are activated above
a threshold at all. The feature activation matrices for one fully connected layer
F , denoted φF (xt) and φG(zit)

are transformed to binary representations and by
using the threshold α. Here, we follow the same setting as in [12], that α = 1.0.

The feature loss Lf then can be determined as follows:

max
zi
− 1

T

T∑
t=1

∑
F

φF,bxt log(φF,b(G(zit)))− (1− φF,bxt) log(1− φF,b(G(zit))) (2)

The second component of the losses is the discriminator loss. Here we use the
original discriminator loss from GAN. The discriminator discriminates the real
sample. Here, to make the discriminative result close to 1, we let the generated
image x̂t close to logD(x) to fool the discriminator. Ld can be defined as follows:

max
D

V (D,G) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(D(1−D(G(z))))] (3)

The hybrid loss function LD combine the two loss components as below:

LD = λfLf + λdLd, (4)

where λf , λd are hyper-parameters to balance the effects of the two loss compo-
nents.

2.3 Ranking Loss for Cross-Modal Data Fusion

One of the most significant challenges for reconstructing the visual stimuli is
how to model the relationship between the stimuli images and the evoked fMRI
scans. Inspired by [9], we develop the rank loss from the image-textual reveral to
visual stimuli reconstruction field for measuring the relationship between the two
cross-madal data. We denote (x̂t, ŷt) as the pairwise image-fMRI sample at time
point t, which generated from the two specific generators of cross-modal data.
We further denote the non-corresponding samples by using x̂′t and ŷ′t, where x̂t

′

goes over stimuli images independent of ŷt, and ŷt
′ goes over brain activities

not evoked by x̂t. The objective function ensures that the groundtruth image-
activity pairs at the top and weakly related ones at the bottom. Therefore, we
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optimize the ranking loss below:

LR =
1

T

T∑
t=1

LRank(x̂t, ŷt), (5)

where the single pairwise sample ranking loss LRank is defined as follows:

LRank =
∑
x̂t

′

[α− s(x̂t, ŷt) + s(x̂t
′, ŷt)]+ +

∑
ŷt′

[α− s(x̂t, ŷt) + s(x̂t, ŷt
′)]+, (6)

where α is a margin, s(x̂t, ŷt) = − ‖ (max(0, x̂t − ŷt)) ‖2 is the order-violation
penalty used as a similarity. Futher, [x]+ represents max(x, 0).

The overall loss function is then given as follows:

Lloss = λDLD + λRLR, (7)

where λD, λR are hyper-parameters to balance the effects of the two loss func-
tions. We randomly choose all the parameters from {0.01, 0.05, 0.1, 0.5, 1, 5, 10}.
The values were determined via optimizing on the training set. Optimization
specifically for each dataset may improve the results further.

3 Experimental Results

Datasets: In this paper, we employ two publicly available datasets to validate
the proposed method, including, a) Open NEURO1 dataset, and b) Handwritten
digits dataset. For the Open NEURO dataset, we select the dataset numbered
DS105 [2] in the Open NEURO Project. In DS105, 6 subjects were stimulated
with grayscale images in 8 categories, and each subject underwent 12 runs of
experiments. Among them, subject No.5 miss one run of data record, with only
11 runs of data. In this paper, we use a leave-one-out cross validation strategy to
adjust the parameters and evaluate the effectiveness of the method we propose.
In each phase, data from five subjects are used for training, while data from one
subject is used during the test stage.

For the handwritten digits dataset, we use the same dataset as the experiment
in [6]. There are one hundred gray-scale handwritten digit images (50 of digital
“6” and the equal numbers of digital “9”) in the dataset. The image resolution
is 28×28. A 10-fold cross validation was performed (i.e. each category contained
45 training data and 5 test data for each experiment).

Experiment Settings: The proposed method is compared with four well-known
methods, including 1) Bayesian canonical correlation analysis (BCCA)[10]: A
multiview linear generative model designed for neural encoding and decoding.
2) Deep canonically correlated autoencoder (DCCAE)[11]: A cross-view repre-
sentation model to learn the deep representations from multiview data. 3) Deep

1 http://openneuro.org
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Table 1. Performances of compared methods on the DS105 dataset.

Model Euc dis↓ p-value PCC↑ p-value MSE↓ p-value

BCCA 0.787±0.153 1.3839e-14 0.561±0.159 9.8467e-11 0.208±0.062 8.2238e-9
DCCAE 0.751±0.196 1.6552e-10 0.584±0.193 8.5767e-10 0.171±0.104 2.0229e-7
DGMM 0.652±0.122 2.4369e-7 0.636±0.146 2.8228e-7 0.124±0.069 3.4167e-4
DCGAN 0.641±0.089 7.9318e-5 0.651±0.096 8.0966e-6 0.116±0.074 0.0055
Proposed 0.609±0.061 —— 0.689±0.063 —— 0.091±0.051 ——

Table 2. Performances of compared methods on the handwritten digits dataset.

Model Euc dis↓ p-value PCC↑ p-value MSE↓ p-value

BCCA 0.679±0.155 1.1709e-10 0.423±0.139 1.6853e-22 0.119±0.023 1.8554e-20
DCCAE 0.631±0.064 9.5486e-9 0.529±0.047 5.0496e-20 0.077±0.018 3.3630e-11
DGMM 0.585±0.061 0.0025 0.801±0.061 0.0291 0.037±0.019 0.004
DCGAN 0.581±0.055 0.0238 0.799±0.057 0.0163 0.038±0.022 0.0096
Proposed 0.568±0.037 —— 0.812±0.059 —— 0.033±0.015 ——

generative multiview model (DGMM)[6]: A deep generative multi-view learning
model for reconstructing the perceive images from brain fMRI activities. 4) Deep
convolutional generative adversarial network (DCGAN)[12]: A GAN framework
used to generate arbitrary images from the stimuli domain (i.e., handwritten
characters or natural gray scale images).

Three evaluation metrics are used to measure the reconstruction performance
of different methods, including 1) Euclidean distance (Euc dis), the smaller the
value is, the more similar reconstructed result we obtained. 2) Pearson’s corre-
lation coefficient (PCC), which shows the correlation between the original and
reconstructed images. 3) Mean squared error (MSE), which calculates the pixel-
level error between the reconstructed image and the original image. The smaller
the error, the more similar the reconstructed image is to the real image.

Quantitative Analysis: Performances of compared methods on two datasets were
listed in Table 1 and 2. Table 1 shows the experimental results of dataset DS105,
several observations can be drawn as follows. First, the proposed method obtains
a considerably better performance compared with the other methods. Second,
by comparing the proposed method with BCCA, a linear model for stimuli re-
construction, we can see that our method is always out-perform BCCA. These
results show that our reconstruction method with deep network is better than
linear model by extracting nonlinear features from visual images and fitting im-
ages. Third, compared with DCCAE, the proposed method shows significantly
better performance. As a nonlinear cross reconstruction model, DCCAE achieves
better performance than BCCA, but compared with our method, there is a lack
of time-series information mining. Fourth, the performance of DGMM is mod-
erate on both of the two datasets. This may be caused by the performance
gap between DGMM’s deep network model and GAN’s generative discriminant
model. The last but not the least, compared with DCGAN, LSTM network in
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(a) (b)

Fig. 2. Image reconstruction results of different methods on two datasets. (a) Hand-
written digits dataset (b) DS105 dataset (category=bottles).

our method plays an important role in mining the correlation between the stimuli
images and the brain activity patterns.

For the handwritten digits dataset, the results are shown in Table 2. The
quantitative results on the three evaluation metrics are also at the best level.
For the three campared methods of BCCA, DCCAE and DGMM, we refer to
the experimental settings in [6], and also refer to their experimental results on
MSE. And for Euc dis and PCC here, we obtained similar results as which on
DS105 dataset. The reason is as analyzed above. Compared with DCGAN, our
method also takes the better results because of the use of LSTM network and the
cross-modal ranking loss. In addition, p-values are also displayed in the tables
to verify the significance of our experimental results.

Qualitative Analysis: The reconstructed results on two different datasets are
shown in Fig.2(a)-(b), respectively. In each figure, the top row shows the pre-
sented visual images, while the following rows show the reconstructed results of
all compared methods.

In Fig.2(a), the reconstructed handwritten digits are very similar to the
original images. Compared with our method, the performances of BCCA and
DCCAE are not acceptable. The complex noises often influence the their recon-
struction results and the results also lack of the basic features in the original
images. Furthermore, the reconstruction results of DGMM and DCGAN are
coarse too. Although their results are better than those of BCCA and DCCAE,
they lost some information in details compared with our method, because they
did not take the time-series information into account. The reconstructing results
of DS105 (categories = “bottles”) are shown in Fig.2(b). As can be seen from
the figure, our method produces better reconstruction results than the compared
methods. Fig.2(b) also indicates that the effect of our method is obviously bet-
ter than other methods on the reconstruction of natural images. In particular,
BCCA and DCCAE cannot provide acceptable performance in characterizing
detailed contours, which may be related to their mapping capabilities. DGMM
and DCGAN are better than the first two methods, but they are not as good as
our method when describing image details, such as color.
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4 Conclusion

In this paper, we present a time-series information guided GAN method for
perceived image reconstruction from the human brain activities. Our method
is not only a generative model to model the relationship between the stimuli
image and the evoked brain activities, but also take the time-series information
of fMRI data into account. Furthermore, the pairwise ranking loss is introduced
to measure the relationship between the stimuli images and the corresponding
fMRI data, which ensures that the strongly associated pairs is at the top and the
weakly related ones is at the bottom. Our reconstruction model can also achieve
better performance in comparison with state-of-the-art reconstruction methods
on both of the two publicly available fMRI datasets.
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