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The Mind Reader (in theory)

THE MIND READER

Smith, Nature, 2013
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Recovery Movies from Human Brain
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functional Imaging: functional MRI (fMRI)
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fMRI vs. Other Modalities

@ Prior to the discovery that within-area patterns of response in fMRI
carried information that afforded decoding of stimulus distinctions.

@ It was generally believed that the spatial resolution of fMRI allowed
investigators to ask only which task or stimulus activated a region
globally.

@ Instead of asking what a regions function is, in terms of a single brain
state associated with global activity, fMRI investigators can now ask
what information is represented in a region, in terms of brain
states associated with distinct patterns of activity, and how that
information is encoded and organized.

@ A wide range of open source fMRI datasets.
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The Human Brain Decoding: Problem Definition

Image fMRI scan
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Representational Space: Example
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Hyperalignment
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@ The main assumption in Hyperalignment is that the neural actives in different
brains are noisy ‘rotations’ of a common space Haxby, Neuron, 2011.

@ It can be formulated as extracting shared space from multi-view (multi-subject)
data.
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Classical Hyperalignment

Classical Hyperalignment can be formulated by Generalized Canonical Cor-
relation Analysis (CCA): Haxby, Neuron, 2011

;?;'EZHX”R‘ ~g

-
subject to <X(Z)R(£)) XOR® — |

where the common space can be denoted by:
1 S
TV _ = ORY
GeR =3 E XY/RY/,

@ X() e RTXV denotes the neural activities, and R(Y) € RV*V s the mappings
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Regularized Hyperalignment

@ RHA's Objective Function can be denoted as follows:

S o 2
I

subject to (R(Z)>T <<X(Z))TX(Z) + €|> RO =

@ The common space: G = ¢ Z XU)R0)

@ Here, the regularizatlon term € can improve the stability of alignment
by providing a better inverse of the covariance matrix for X(/).
Xu, IEEE SSP, 2012
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Kernelized Hyperalignment

@ KHA's Objective Function can be denoted as follows:

min Z ch(x —GHi

R(),G “

.
subject to (CD(X(Z))R“)) ¢(X(£))R(z) —1

o The common space: G = ¢ jS:1 o (X0))RY)
@ Here, ®(.) is a standard kernel function that can handle nonlinear
datasets.
@ However, classical kernel functions are limited by a restricted fixed
representational space.
Lorbert, NIPS, 2012
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e Deep Hyperalignment
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Challenges

There are some long standing challenges for calculating accurate functional
alignments:

@ High Dimensionality

@ Sparsity

@ Nonlinear Features

°

Large Number of Subjects
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Deep Kernel Function
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Deep Hyperalignment (DHA)
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Deep Hyperalignment: Objective Function

@ DHA's Objective Function can be denoted as follows:

subject to (R()) ! <(fk(x<f>;0(“)) h(X©00) ¢ el) RO — |

@ The common space: G = %Z}ll f;(XU);00))RU)

@ Here, f; is the deep neural network such as:

&(X(Z)’Q(Z)) = mat(h(g), T, Vnew>7

) = g (IR, 1 b))

where h(lz) = vec(X(Z)) and m=2:C.
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e Deep Hyperalignment: Optimization
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Deep Hyperalignment: Objective Function

@ Firstly, we employ the rank-m SVD as follows:
fé(x(é).e(f)) SvD Q(f)z(f)(‘u(f))T ¢=1:S
@ Then, projection matrix can be calculated as follows:
0 _ £,(x0;6) ((fz(x(m;gm)) f(XO;9) 4 d) 9(e>))

- QW (Z(L’))T (Z(E) (Z(Z))T + d) Z(E) (Q ) — Qp® (Q 4))T

-1
@ Here, we have a diagonal product D() (D ) =(z (Z)) (Z(Z)(Z(e))T +e|) =0,
Thus, calculating the inverse of matrix is easy!
Yousefnezhad, NIPS, 2017
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Deep Hyperalignment: Optimization (Step 1)

By considering fixed mapping functions RY) and fixed network parameters 8), DHA's
Objective Function can be reformulated as follows:

. ;raln Z HG — f X() 9() H = max(tr GTAG))

where the sum of projection matrices can be calculated as follows:

A= ZP() AA",  where AcR™ =[QWDW. . . Q®D®)]

Theorem

By using Incremental SVD, the shared space G can be calculated as follows, where
A= {)\1... A7} is the eigenvalues of A:

AG=GA — A=GIV'

v
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Deep Hyperalignment: Optimization (Step 2)

By considering fixed share space G and fixed network parameters 0\), DHA's
mapping functions can be calculated as follows:

T -1 T
RO ((Q(Xmﬁw))) ff(x(a,g(e))H.) (£(x©:09))
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Deep Hyperalignment: Optimization (Step 3)

Theorem

By considering fixed share space G and fixed mapping functions R7), we

use back-propagation algorithm for seeking an optimized parameters for the
deep network as follows:

oz . .
e = OGT — ) (R () .p(0)
o7 (x(g) — 2RTG —2RT(RY) (f(x®,61))

where Z is the sum of the eigenvalues of A:

.
y Z,\g
/=1

Muhammad (Tony) Yousefnezhad (NUAA) Analyzing Human Brain Patterns MLOC 2018 26 / 41



Deep Hyperalignment: Algorithm

Algorithm 1 Deep Hyperalignment (DHA)

Input: Data X9, i = 1:5, Regularized parameter ¢, Number of layers C', Number of units U/ (")
for m = 2:C, HA template G for testing phase (default (}), Learning rate 7 (default 10~ [13]).
Output: DHA mappings R(Y) and parameters #(“), HA template G just from training phase
Method:

01. Initialize iteration counter: m < 1 and () ~ A/(0,1) for £ = 1:S.

02. Construct fy (X(Z);O(Z)) based on (4) and (5) by using 6, C, U™ for £ = 1:5.

03. IF (G = () THEN 9 The first step of DHA: fixed ) and calculating G and R |
04. Generate A by using (8) and (10).

05. Calculate G by applying Incremental SVD [15] to A=GIUT.

06. ELSE

07. G=G.

08. END IF

09. Calculate mappings R(®), ¢ = 1:5 by using (12).

10. Estimate error of iteration ~,,, = Ef:l Zf:iﬂ ‘ fi (X(”;OW)R(” — [ (X(J);0<7))R(J> HF
11. IF ((m > 3)and (Y, > Vm—1 > A/m,z)) THEN % This is the finishing condition.

12.  Return calculated G, R(®), () (¢ = 1:5) related to (m-2)-th iteration.
13. END IF % The second step of DHA: fixed G and R and updating 6*) |

14. V) backprop(az/afg (x“);a(”),a(l)) by using (13) for £ = 1:5.

15. Update ) « ) — nvo©® for £ = 1:S and then m < m + 1
16. SAVE all DHA parameters related to this iteration and GO TO Line 02.
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Datasets

Title ID S K T \% X Y 7Z  Scamner TR TE
Mixed-gambles task DS005 48 2 240 450 53 63 52 S 3T 2 30
Visual Object Recognition DS105 71 8§ 121 1963 79 95 79  G3T 25 30
Word and Object Processing  DS107 98 4 164 932 53 63 52 S3T 2 28
Auditory and Visual Oddball DS116 102 2 170 2532 53 63 40 P3T 2 25
Multi-subject, multi-modal DSI17 171 2 210 524 64 61 33 S3T 230
Forrest Gump DS113 20 10 451 2400 160 160 36 ST 23 22
Raiders of the Lost Ark N/A 10 7 924 980 78 78 54 S 3T 3 30

S is the number of subject; K denotes the number of stimulus categories; T is the number of scans in unites of
TRs (Time of Repetition); V denotes the number of voxels in ROL; X, Y, Z are the size of 3D images; Scanners
include S=Siemens, G = General Electric, and P = Philips in 3 Tesla or 7 Tesla; TR is Time of Repetition in
millisecond; TE denotes Echo Time in second; Please see openfinri.org for more information.
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Simple Task Analysis: Accuracy of HA methods

JAlgorithms, Datasets— DS005 DS105 DS107 DS116 DS117

v-SVM 71.65+0.97 22.89+1.02 38.84+0.82 67.26£1.99 73.32+1.67
Hyperalignment (HA) 81.274+0.59 30.034+0.87 43.014+0.56 74.234+1.40 77.934+0.29
Regularized HA 83.06+0.36 32.6240.52 46.82+0.37 78.71+0.76 84.224+0.44
Kernel HA 85.2940.49 37.144+0.91 52.69+0.69 78.031+0.89 83.32+0.41
SVD-HA 90.82+1.23 40.21+0.83 59.544+0.99 81.5640.54 95.62+0.83
Shared Response Model 91.264+0.34 48.77+0.94 64.114+0.37 83.314+0.73 95.014+0.64
SearchLight 90.2140.61 49.86+0.4 64.071+0.98 82.3240.28 94.96+0.24
Convolutional Autoencoder — 94.25+0.76 54.52+0.80 72.16+0.43  91.494+0.67  95.92+0.67
Deep HA 97.92+0.82 60.39+0.68 73.05+0.63 90.284+0.71 97.99+0.94
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Simple Task Analysis: AUC of HA methods

JAlgorithms, Datasets—
v-SVM [17]
Hyperalignment (HA)
Regularized HA

Kernel HA

SVD-HA

Shared Response Model
SearchLight

Convolutional Autoencoder
Deep HA

DS005
68.37£1.01
70.32+0.92
82.2240.42
80.91+0.21
88.54+0.71
90.23+0.74
89.79£0.25
91.2440.61

96.91+0.82

DS105
21.76+0.91
28.91+1.03
30.35+0.39
36.23+£0.57
37.61£0.62
44.48+0.75
47.32£0.92
52.16+0.63

59.57+0.32

DS107
36.84+1.45
40.2140.33
43.6310.61
50.41£0.92
57.54+0.31
62.41£0.72
61.84+0.32

72.33+0.79
70.23+0.92

DS116
62.49+1.34
70.67+0.97
76.34+0.45
75.28+0.94
78.66+0.82
79.20£0.98
80.63+0.81
87.53+0.72

89.93+0.24

DS117
70.17£0.59
76.14+0.49
81.54+0.92
80.92+0.28
92.1440.42
93.65+0.93
93.26+0.72
91.4940.33

96.13+0.32
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Complex Task Analysis
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Runtime Analysis
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Alignment by selecting features
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Visualizing Neural Activities on DS105
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@ Conclusion
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Conclusion

@ Our knowledge from human brain is so limited.

@ In order to understand the human brain, we need to develop new

methods in Neuroscience, Psychology, Mathematics, and Computer
Science.

@ Not only can Artificial Intelligence use as a powerful tool for
understanding the human brain but also this understanding can be
employed reversely to develop Al tools, e.g. Deep Learning.
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easy fMRI Project

Open Source + Free + Python + SK-Learn + MPI + Tensorflow

@ @ (x| [A] SUMA:LR: N27: [Ih.smoo...

easy fMRI : w Tools

Main | Tools

Preprocessing (FSL)

Feature Analysis

Model Analysis

Visualization (AFNI)

About Exit

https://leasyfmri.gitlab.io/
https://leasyfmri.github.io/
https://leasyfmri.sourceforge.io/
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easy fMRI : DATA

Matlab + 40 dataset + 200 cognitive tasks + 1000 subjects

easyfmridata

Brought to you by.

Name Modified & Sive & Downloads / Week $

3 Parent folder

Cpsza2 2018-04.27 °o @ W
Spsi07 2018-04-27 o @ w
ops1os 2018-04-27 o @ w
oos2a1 2018-02-02 o @ mw
Dos220 2018-02-02 °o @ mw
osz05 2018-02-02 °c @ W
osz03 2018-02.02 c @ W
os7o 2018 02.02 o @ w

https://leasydata.gitlab.io/
https://easyfmridata.github.io/
https://leasyfmridata.sourceforge.io/
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Thank You
Q&A

For more details, contact:

myousefnezhad@outlook.com
https://myousefnezhad.gitlab.io/
https: //myousefnezhad.github.io/
https://myousefnezhad.sourceforge.io/
https:/ /ibrain.nuaa.edu.cn
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