
Deep Hyperalignment

Muhammad Yousefnezhad, Daoqiang Zhang 
31st Advances in Neural Information Processing Systems (NIPS-17)

Dec 2017

iBRAIN



What is 
Hyperalignment?



Brain Function Analysis

Deep Hyperalignment 03 of 21

Smith, Nature, 2013



Hyperalignment

…

Individual Brain Patterns Common Space (G)
Vo

xe
l 2

Voxel 1

Vo
xe

l 2

Voxel 1

Su
bj

ec
t 1

Su
bj

ec
t  

S

Deep Hyperalignment 04 of 21



A Generalized Approach
min

R(i),R( j)

S

∑
i= 1

S

∑
j= i+ 1

f(X(i))R(i) − f(X( j))R( j)
2

F

s.t.   (R(ℓ))
⊤

((f(X(ℓ)))
⊤

f(X(ℓ)) + ϵI)R(ℓ) = I,  ℓ = 1:S

 
 
 
If f(x) = x & ϵ ≠ 0, then we have the Regularized HA

If f(x) = x & ϵ = 0, then we have the original HA

If f(x) is a nonlinear kernel, then we have the Kernel HA
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DHA: Objective Function

min
θ(i), R(i)

θ( j), R( j)

S

∑
i= 1

S

∑
j= i+ 1

fi(X(i);θ(i))R(i) − fj(X( j);θ( j))R( j) 2

F

s.t.   (R(ℓ))
⊤((fℓ(X(ℓ);θ(ℓ)))

⊤
fℓ(X(ℓ);θ(ℓ)) + ϵI)R(ℓ) = I,  ℓ = 1:S

We want to optimize following function:

where the deep network is defined as follows:

fℓ(X(ℓ);θ(ℓ)) = mat(h(ℓ)
C , T, Vn ew)

h(ℓ)
m = g(W(ℓ)

m h(ℓ)
m−1 + b(ℓ)

m ),  where h(ℓ)
1 = vec(X(ℓ)) and m = 2:C
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Generalized DHA

min
G, R(i), θ(i)

S

∑
i= 1

G − fi(X(i);θ(i))R(i)
2

F

s.t. G⊤G = I

G = 1
S

S

∑
j= 1

fj(X( j);θ( j))R( j)

where
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DHA: Optimization
rank-m SVD

fℓ(X(ℓ);θ(ℓ)) SVD= Ω(ℓ)Σ(ℓ)(Ψ(ℓ))⊤,  ℓ = 1:S

Projection Matrix
P(ℓ) = fℓ(X(ℓ);θ(ℓ))((fℓ(X(ℓ);θ(ℓ)))

⊤
fℓ(X(ℓ);θ(ℓ)) + ϵI)

−1

(fℓ(X(ℓ);θ(ℓ)))
⊤

= Ω(ℓ)(Σ(ℓ))⊤(Σ(ℓ)(Σ(ℓ))⊤ + ϵI)
−1

Σ(ℓ)(Ω(ℓ))⊤ = Ω(ℓ)D(ℓ)(Ω(ℓ)D(ℓ))
⊤

D(ℓ)(D(ℓ))⊤ = (Σ(ℓ))⊤(Σ(ℓ)(Σ(ℓ))⊤ + ϵI)
−1

Σ(ℓ) . where

Sum of Projection Matrices

A =
S

∑
i= 1

P(i) = Ã Ã ⊤,   where  Ã ∈ ℝT×mS = [Ω(1)D(1)…Ω(S)D(S)] .
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DHA: Optimization

min
G, R(i), θ(i)

S

∑
i= 1

G − fi(X(i);θ(i))R(i) ≡ max
G (tr(G⊤AG)) .

Objective Function can be reformulated as follows:

DHA mappings can be calculated as follows:

R(ℓ) = ((fℓ(X(ℓ);θ(ℓ)))
⊤

fℓ(X(ℓ);θ(ℓ)) + ϵI)
−1

(fℓ(X(ℓ);θ(ℓ)))
⊤
G .

So, we have:
AG = GΛ, where Λ = {λ1…λT}

Ã = G Σ̃ Ψ̃⊤ Incremental PCA
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In order to use back-propagation algorithm for 
seeking an optimized parameters for the deep 
network, we also have: 

∂Z
∂fℓ(X(ℓ);θ(ℓ))

= 2R(ℓ)G⊤ − 2R(ℓ)(R(ℓ))⊤ (fℓ(X(ℓ);θ(ℓ)))
⊤

.

DHA: Optimization

where

Z =
T

∑
ℓ= 1

λℓ
Deep Hyperalignment 12 of 21



Empirical 
Studies 



Datasets

Table S1: Variables or Functions

Variable or Function Description
R The set of real numbers.
I The identity matrix.

i, j, `,m, n,↵,�, µ, ⌧ The indices.
K The number of stimulus categories.
S The number of Subjects.
T The number of time points in unites of TRs (Time of Repetition).
V The number of voxels in the original representation space.

Vnew The number of features after applying the Artificial Neural Network (ANN).
C The number of layers in ANN.

U (m) The number of units in m-th intermediate layers of ANN.
✏ The regularized constant.

X(`) =
n
x(`)
mn

o
2 RT⇥V The original neural activities for `-th subject.

R(`) HA or DHA mapping for `-th subject.
✓(`)=

�
W(`)

m , b(`)
m , m=1:C

 
The parameters of ANN for `-th subject.

h(`)
m = g(. . . ) The result of activation function for `-th subject and m-th layer.

f`
�
X(`);✓(`)

�
= Y(`) The cognitive features for `-th subject after applying ANN.

G 2 RT⇥Vnew The DHA template.
Q 2 RVnew⇥Vnew An orthogonal matrix for mapping two different DHA template to each other.

f`
�
X(`);✓(`)

� SV D
= ⌦(`)⌃(`)

�
 (`)

�> The SVD decomposition of mapped cognitive features for `-th subject.
e�(`) The covariance matrix for `-th subject (just used in this document)
�(`) The inverse of covariance matrix for `-th subject (just used in this document)
P(`) The projection of cognitive features for `-th subject.
D(`) The diagonal matrix used for decomposition of P(`) for `-th subject.

A = eAeA> Sum of all projections and its Cholesky decomposition.
⇤ =

�
�1 . . .�T

 
Eigenvalues of A.

Z =
PT

`=1 �` Sum of eigenvalues of A.
⌘ Learning rate.

r✓(`) The gradient of ANN parameters for `-th subject.
�m Error of m-th iteration.

k1, k3,�, ⇢ Convolutional Autoencoder (CAE) parameters.
tr() The trace function.

backprop() The back-propagation function.
g(x) = 1

1+exp(�x) Sigmoid function.
g(x) = tanh(x) = exp(x)�exp(�x)

exp(x)+exp(�x) Hyperbolic function.
g(x) = ln(1 + exp(x)) Rectified Linear Unit (ReLU).

Table S2: The datasets.

Title ID S K T V X Y Z Scanner TR TE
Mixed-gambles task DS005 48 2 240 450 53 63 52 S 3T 2 30
Visual Object Recognition DS105 71 8 121 1963 79 95 79 G 3T 2.5 30
Word and Object Processing DS107 98 4 164 932 53 63 52 S 3T 2 28
Auditory and Visual Oddball DS116 102 2 170 2532 53 63 40 P 3T 2 25
Multi-subject, multi-modal DS117 171 2 210 524 64 61 33 S 3T 2 30
Forrest Gump DS113 20 10 451 2400 160 160 36 S 7T 2.3 22
Raiders of the Lost Ark N/A 10 7 924 980 78 78 54 S 3T 3 30

S is the number of subject; K denotes the number of stimulus categories; T is the number of scans in unites of
TRs (Time of Repetition); V denotes the number of voxels in ROI; X, Y, Z are the size of 3D images; Scanners
include S=Siemens, G = General Electric, and P = Philips in 3 Tesla or 7 Tesla; TR is Time of Repetition in
millisecond; TE denotes Echo Time in second; Please see openfmri.org for more information.
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Simple Tasks Analysis 
Table 1: Accuracy of HA methods in post-alignment classification by using simple task datasets
#Algorithms, Datasets! DS005 DS105 DS107 DS116 DS117
⌫-SVM [17] 71.65±0.97 22.89±1.02 38.84±0.82 67.26±1.99 73.32±1.67
HA [1] 81.27±0.59 30.03±0.87 43.01±0.56 74.23±1.40 77.93±0.29
RHA [2] 83.06±0.36 32.62±0.52 46.82±0.37 78.71±0.76 84.22±0.44
KHA [3] 85.29±0.49 37.14±0.91 52.69±0.69 78.03±0.89 83.32±0.41
SVD-HA [4] 90.82±1.23 40.21±0.83 59.54±0.99 81.56±0.54 95.62±0.83
SRM [5] 91.26±0.34 48.77±0.94 64.11±0.37 83.31±0.73 95.01±0.64
SL [9] 90.21±0.61 49.86±0.4 64.07±0.98 82.32±0.28 94.96±0.24
CAE [6] 94.25±0.76 54.52±0.80 72.16±0.43 91.49±0.67 95.92±0.67
DHA 97.92±0.82 60.39±0.68 73.05±0.63 90.28±0.71 97.99±0.94

Table 2: Area under the ROC curve (AUC) of different HA methods in post-alignment classification
by using simple task datasets

#Algorithms, Datasets! DS005 DS105 DS107 DS116 DS117
⌫-SVM [17] 68.37±1.01 21.76±0.91 36.84±1.45 62.49±1.34 70.17±0.59
HA [1] 70.32±0.92 28.91±1.03 40.21±0.33 70.67±0.97 76.14±0.49
RHA [2] 82.22±0.42 30.35±0.39 43.63±0.61 76.34±0.45 81.54±0.92
KHA [3] 80.91±0.21 36.23±0.57 50.41±0.92 75.28±0.94 80.92±0.28
SVD-HA [4] 88.54±0.71 37.61±0.62 57.54±0.31 78.66±0.82 92.14±0.42
SRM [5] 90.23±0.74 44.48±0.75 62.41±0.72 79.20±0.98 93.65±0.93
SL [9] 89.79±0.25 47.32±0.92 61.84±0.32 80.63±0.81 93.26±0.72
CAE [6] 91.24±0.61 52.16±0.63 72.33±0.79 87.53±0.72 91.49±0.33
DHA 96.91±0.82 59.57±0.32 70.23±0.92 89.93±0.24 96.13±0.32

cross-validation is utilized for partitioning datasets to the training set and testing set. Different HA
methods are employed for functional aligning and then the mapped neural activities are used to
generate the classification model. The performance of the proposed method is compared with the
⌫-SVM algorithm as the baseline, where the features are used after anatomical alignment without
applying any hyperalignment mapping. Further, performances of the standard HA [1], RHA [2],
KHA [3], SVDHA [4], SRM [5], and SL [9] are reported as state-of-the-arts HA methods. In this
paper, the results of HA algorithm is generated by employing Generalized CCA proposed in [11].
In addition, regularized parameters (↵,�) in RHA are optimally assigned based on [2]. Further,
KHA algorithm is used by the Gaussian kernel, which is evaluated as the best kernel in the original
paper [3]. As another deep-learning-based alternative for functional alignment, the performance
of CAE [6] is also compared with the proposed method. Like the original paper [6], this paper
employs k1 = k3 = {5, 10, 15, 20, 25}, ⇢ = {0.1, 0.25, 0.5, 0.75, 0.9}, � = {0.1, 1, 5, 10}. Then,
aligned neural activities (by using CAE) are applied to the classification algorithm same as other
HA techniques. Finally, the best performance for each dataset is reported. This paper follows the
CAE setup to set the same settings in the proposed method. Consequently, three hidden layers
(C = 5) and the regularized parameters ✏ = {10�4, 10�6, 10�8} are employed in the DHA method.
In addition, the number of units in the intermediate layers are considered U (m) = KV , where
m = 2:C-1, C is the number of layers, V denotes the number of voxels and K is the number of
stimulus categories in each dataset1. Further, three distinctive activation functions are employed, i.e.
Sigmoid (g(x) = 1/1 + exp(�x)), Hyperbolic (g(x) = tanh(x) = exp(x) � exp(�x)/exp(x) + exp(�x)),
and Rectified Linear Unit or ReLU (g(x) = ln(1 + exp(x))). Finally, the best performance for each
dataset is reported. All algorithms are implemented by Python 3 on a PC with certain specifications2

by authors in order to generate experimental results.

4.1 Simple Tasks Analysis

This paper utilizes 5 datasets, shared by Open fMRI (openfmri.org), for running empirical studies
of this section. Further, numbers of original and aligned features are considered equal (V = Vnew)

1Although we can use any settings for DHA, we empirically figured out this setting is acceptable to seek an
optimum solution. Indeed, we follow CAE setup in the network structure but use the number of categories (K)
rather than a series of parameters (k1, k3, ⇢,�). In the current format of DHA, we just need to set the regularized
constant and the nonlinear activation function, while a wide range of parameters must be set in the CAE.

2DEL, CPU = Intel Xeon E5-2630 v3 (8⇥2.4 GHz), RAM = 64GB, GPU = GeForce GTX TITAN X (12GB
memory), OS = Ubuntu 16.04.2 LTS, Python = 3.6.1, Pip = 9.0.1, Numpy = 1.12.1, Scipy = 0.19, Scikit-Learn =
0.18.1, Theano = 0.9.
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Complex Tasks Analysis 

Deep Hyperalignment

100200 400 600 800 1000 1200
25
30
35
40
45
50
55
60
65
70
75
80
85

Cl
as

sif
ica

tio
n A

cc
ur

ac
y (

%)

# of voxels per hemisphere
 vSVM  HA  KHA  RHA  SL

     SVDHA  SRM  CAE  DHA

(a) Forrest Gump
(TRs = 100)

100200 400 600 800 1000 1200
30
35
40
45
50
55
60
65
70
75
80
85

Cl
as

sif
ica

tio
n A

cc
ur

ac
y (

%)

# of voxels per hemisphere
 vSVM  HA  KHA  RHA  SL

     SVDHA  SRM  CAE  DHA

(b) Forrest Gump
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(TRs = 800)
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Figure 1: Comparison of different HA algorithms on complex task datasets by using ranked voxels.
for all HA methods. As the first dataset, ‘Mixed-gambles task’ (DS005) includes S = 48 subjects.
It also contains K = 2 categories of risk tasks in the human brain, where the chance of selection
is 50/50. In this dataset, the best results for CAE is generated by following parameters k1 = k3 =
20, ⇢ = 0.75,� = 1 and for DHA by using ✏ = 10�8 and Hyperbolic function. In addition, ROI is
defined based on the original paper [18]. As the second dataset, ‘Visual Object Recognition’ (DS105)
includes S = 71 subjects. It also contains K = 8 categories of visual stimuli, i.e. gray-scale images
of faces, houses, cats, bottles, scissors, shoes, chairs, and scrambles (nonsense patterns). In this
dataset, the best results for CAE is generated by following parameters k1 = k3 = 25, ⇢ = 0.9,� = 5
and for DHA by using ✏ = 10�6 and Sigmoid function. Please see [1, 7] for more information. As
the third dataset, ‘Word and Object Processing’ (DS107) includes S = 98 subjects. It contains K = 4
categories of visual stimuli, i.e. words, objects, scrambles, consonants. In this dataset, the best results
for CAE is generated by following parameters k1 = k3 = 10, ⇢ = 0.5,� = 10 and for DHA by
using ✏ = 10�6 and ReLU function. Please see [19] for more information. As the fourth dataset,
‘Multi-subject, multi-modal human neuroimaging dataset’ (DS117) includes MEG and fMRI images
for S = 171 subjects. This paper just uses the fMRI images of this dataset. It also contains K = 2
categories of visual stimuli, i.e. human faces, and scrambles. In this dataset, the best results for CAE
is generated by following parameters k1 = k3 = 20, ⇢ = 0.9,� = 5 and for DHA by using ✏ = 10�8

and Sigmoid function. Please see [20] for more information. The responses of voxels in the Ventral
Cortex are analyzed for these three datasets (DS105, DS107, DS117). As the last dataset, ‘Auditory
and Visual Oddball EEG-fMRI’ (DS116) includes EEG signals and fMRI images for S = 102
subjects. This paper only employs the fMRI images of this dataset. It contains K = 2 categories
of audio and visual stimuli, including oddball tasks. In this dataset, the best results for CAE is
generated by following parameters k1 = k3 = 10, ⇢ = 0.75,� = 1 and for DHA by using ✏ = 10�4

and ReLU function. In addition, ROI is defined based on the original paper [21]. This paper also
provides the technical information of the employed datasets in the supplementary materials. Table 1
and 2 respectively demonstrate the classification Accuracy and Area Under the ROC Curve (AUC) in
percentage (%) for the predictors. As these tables demonstrate, the performances of classification
analysis without HA method are significantly low. Further, the proposed algorithm has generated
better performance in comparison with other methods because it provided a better embedded space in
order to align neural activities.

4.2 Complex Tasks Analysis

This section uses two fMRI datasets, which are related to watching movies. The numbers of original
and aligned features are considered equal (V = Vnew) for all HA methods. As the first dataset, ‘A
high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio movie’ (DS113)
includes the fMRI data of S = 18 subjects, who watched ‘Forrest Gump (1994)’ movie during
the experiment. This dataset provided by Open fMRI. In this dataset, the best results for CAE is
generated by following parameters k1 = k3 = 25, ⇢ = 0.9,� = 10 and for DHA by using ✏ = 10�8

and Sigmoid function. Please see [7] for more information. As the second dataset, S = 10 subjects
watched ‘Raiders of the Lost Ark (1981)’, where whole brain volumes are 48. In this dataset, the best
results for CAE is generated by following parameters k1 = k3 = 15, ⇢ = 0.75,� = 1 and for DHA
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Classification analysis by 
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Figure 2: Classification by using feature selection.
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Figure 3: Runtime Analysis

by using ✏ = 10�4 and Sigmoid function. Please see [3-5] for more information. In these two datasets,
the ROI is defined in the ventral temporal cortex (VT). Figure 1 depicts the generated results, where
the voxels in ROI are ranked by the method proposed in [1] based on their neurological priorities same
as previous studies [1, 4, 7, 9]. Then, the experiments are repeated by using the different number of
ranked voxels per hemisphere, i.e. in Forrest: [100, 200, 400, 600, 800, 1000, 1200], and in Raiders:
[70, 140, 210, 280, 350, 420, 490]. In addition, the empirical studies are reported by using the first
TRs = [100, 400, 800, 2000] in both datasets. Figure 1 shows that the DHA achieves superior
performance to other HA algorithms.

4.3 Classification analysis by using feature selection

In this section, the effect of features selection (Vnew < V ) on the performance of classification
methods will be discussed by using DS105 and DS107 datasets. Here, the performance of the
proposed method is compared with SVDHA [4], SRM [5], and CAE [6] as the state-of-the-art
HA techniques, which can apply feature selection before generating a classification model. Here,
multi-label ⌫-SVM [17] is used for generating the classification models after each of the mentioned
methods applied on preprocessed fMRI images for functional alignment. In addition, the setup of this
experiment is same as the previous sections (cross-validation, the best parameters, etc.). Figure 2
illustrates the performance of different methods by employing 100% to 60% of features. As depicted
in this figure, the proposed method has generated better performance in comparison with other
methods because it provides better feature representation in comparison with other techniques.

4.4 Runtime Analysis

In this section, the runtime of the proposed method is compared with the previous HA methods by
using DS105 and DS107 datasets. As mentioned before, all of the results in this experiment are
generated by a PC with certain specifications. Figure 3 illustrates the runtime of the mentioned
methods, where runtime of other methods are scaled based on the DHA (runtime of the proposed
method is considered as the unit). As depicted in this figure, CAE generated the worse runtime
because it concurrently employs modified versions of SRM and SL for functional alignment. Further,
SL also includes high time complexity because of the ensemble approach. By considering the
performance of the proposed method in the previous sections, it generates acceptable runtime. As
mentioned before, the proposed method employs rank-m SVD [10] as well as Incremental PCA [16],
which can significantly reduce the time complexity of the optimization procedure [11, 13].

5 Conclusion

This paper extended a deep approach for hyperalignment methods in order to provide accurate
functional alignment in multi-subject fMRI analysis. Deep Hyperalignment (DHA) can handle fMRI
datasets with nonlinearity, high-dimensionality (broad ROI), and a large number of subjects. We have
also illustrated how DHA can be used for post-alignment classification. DHA is parametric and uses
rank-m SVD and stochastic gradient descent for optimization. Consequently, its time complexity
fairly scales with data size and the training data is not referenced when DHA computes the functional
alignment for a new subject. Further, DHA is not limited by a restricted fixed representational space
because the kernel in DHA is a multi-layer neural network, which can separately implement any
nonlinear function for each subject to transfer the brain activities to a common space. Experimental
studies on multi-subject fMRI analysis confirm that the DHA method achieves superior performance
to other state-of-the-art HA algorithms. In the future, we will plan to employ DHA for improving the
performance of other techniques in fMRI analysis, e.g. Representational Similarity Analysis (RSA).
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Figure 2: Classification by using feature selection.
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Figure 3: Runtime Analysis

by using ✏ = 10�4 and Sigmoid function. Please see [3-5] for more information. In these two datasets,
the ROI is defined in the ventral temporal cortex (VT). Figure 1 depicts the generated results, where
the voxels in ROI are ranked by the method proposed in [1] based on their neurological priorities same
as previous studies [1, 4, 7, 9]. Then, the experiments are repeated by using the different number of
ranked voxels per hemisphere, i.e. in Forrest: [100, 200, 400, 600, 800, 1000, 1200], and in Raiders:
[70, 140, 210, 280, 350, 420, 490]. In addition, the empirical studies are reported by using the first
TRs = [100, 400, 800, 2000] in both datasets. Figure 1 shows that the DHA achieves superior
performance to other HA algorithms.

4.3 Classification analysis by using feature selection

In this section, the effect of features selection (Vnew < V ) on the performance of classification
methods will be discussed by using DS105 and DS107 datasets. Here, the performance of the
proposed method is compared with SVDHA [4], SRM [5], and CAE [6] as the state-of-the-art
HA techniques, which can apply feature selection before generating a classification model. Here,
multi-label ⌫-SVM [17] is used for generating the classification models after each of the mentioned
methods applied on preprocessed fMRI images for functional alignment. In addition, the setup of this
experiment is same as the previous sections (cross-validation, the best parameters, etc.). Figure 2
illustrates the performance of different methods by employing 100% to 60% of features. As depicted
in this figure, the proposed method has generated better performance in comparison with other
methods because it provides better feature representation in comparison with other techniques.

4.4 Runtime Analysis

In this section, the runtime of the proposed method is compared with the previous HA methods by
using DS105 and DS107 datasets. As mentioned before, all of the results in this experiment are
generated by a PC with certain specifications. Figure 3 illustrates the runtime of the mentioned
methods, where runtime of other methods are scaled based on the DHA (runtime of the proposed
method is considered as the unit). As depicted in this figure, CAE generated the worse runtime
because it concurrently employs modified versions of SRM and SL for functional alignment. Further,
SL also includes high time complexity because of the ensemble approach. By considering the
performance of the proposed method in the previous sections, it generates acceptable runtime. As
mentioned before, the proposed method employs rank-m SVD [10] as well as Incremental PCA [16],
which can significantly reduce the time complexity of the optimization procedure [11, 13].

5 Conclusion

This paper extended a deep approach for hyperalignment methods in order to provide accurate
functional alignment in multi-subject fMRI analysis. Deep Hyperalignment (DHA) can handle fMRI
datasets with nonlinearity, high-dimensionality (broad ROI), and a large number of subjects. We have
also illustrated how DHA can be used for post-alignment classification. DHA is parametric and uses
rank-m SVD and stochastic gradient descent for optimization. Consequently, its time complexity
fairly scales with data size and the training data is not referenced when DHA computes the functional
alignment for a new subject. Further, DHA is not limited by a restricted fixed representational space
because the kernel in DHA is a multi-layer neural network, which can separately implement any
nonlinear function for each subject to transfer the brain activities to a common space. Experimental
studies on multi-subject fMRI analysis confirm that the DHA method achieves superior performance
to other state-of-the-art HA algorithms. In the future, we will plan to employ DHA for improving the
performance of other techniques in fMRI analysis, e.g. Representational Similarity Analysis (RSA).
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Thank You! 
Q & A

For more details, contact: 
myousefnezhad@nuaa.edu.cn  
myousefnezhad@outlook.com  

https://myousefnezhad.github.io/


