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S.1 Notations

Table S1 illustrates all variables and functions that are employed in this paper.

S.2 Visualizing DHA Common Space (G)

This section presents a visualized example of the DHA common space (G). Here, we have firstly
applied DHA to DS105 dataset and generated the common space by considering V = Vnew same as
SRM [5] and CAE [6] methods. As depicted in Fig. S1, the average of neural activities in each voxel
is calculated and visualized across categories of visual stimuli.

S.3 Technical Information

Figure S2 illustrates the graphical abstract of DHA, where the hyperalignment applied to a problem
with 3-dimensional space for mapping the neural activities to a common space with 2-dimensions. In
addition, Table S2 demonstrates the technical information of the employed datasets in this paper.

S.4 Overview of Hyperalignment methods

Preprocessed fMRI time series collected for S subjects can be defined by X(i) =
{
x
(i)
mn

}
∈

RT×V , i = 1:S,m = 1:T, n = 1:V , where T denotes the number of time points in unites of TRs
(Time of Repetition), V is the number of voxels, and x(i)mn ∈ R denotes the functional activity for the
i-th subject in the m-th time point and the n-th voxel. For simplicity assume that all data points are
normalized by zero-mean and unit-variance, X(i) ∼ N (0, 1), i = 1:S. If the original data points are
not normalized, we can consider this assumption as a preprocessing step. Since there are more voxels
than TRs in most of the fMRI studies, X(i) and the voxel correlation map (X(i))>X(j) may not be
full rank [1–4]. In training-set, time synchronized stimulus ensures temporal alignment, i.e. the m-th
time point for all of the subjects represents the same simulation [2, 3]. Indeed, the main goal of
HA methods is aligning the columns of X(i) across subjects [2]. In previous studies, Inter-Subject
Correlation (ISC) was defined for functional alignment between two distinct subjects as follows,
where tr() is the trace function: [1–4]

ISC(X(i),X(j)) = (1/V )tr
(
(X(i))>X(j)

)
. (S.1)

By considering X(`) ∼ N (0, 1), ` = 1:S as column-wise standardized, ISC lies in [−1,+1]. Here,
the large values illustrate better alignment [2, 4]. Based on (S.1), Hyperalignment (HA) problem can
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be defined as follows: [1–3]

max
R(i),R(j)

S∑
i=1

S∑
j=i+1

ISC(X(i)R(i),X(j)R(j)) s.t.
(
R(`)

)>
Φ̃(`)R(`) = I, ` = 1:S, (S.2)

where I is the identity matrix, R(`) =
{
r
(`)
mn

}
∈ RV×V denotes the solution for `-th subject, and the

matrices Φ̃(`) ∈ RV×V , ` = 1:S are symmetric and positive definite. By considering Φ̃(`) = I, (S.2)
is equivalent to a multi-set orthogonal Procrustes problem, which is commonly used in share analysis.
Furthermore, if Φ̃(`) = (X(`))>X(`), then (S.2) denotes a form of multi-set Canonical Correlation
Analysis (CCA) [3, 4] as follows:

max
R(i),R(j)

S∑
i=1

S∑
j=i+1

tr
(
(X(i)R(i))>X(j)R(j)

)
s.t.

(
X(`)R(`)

)>
X(`)R(`) = I, ` = 1:S.

(S.3)

Lemma S.1. (S.3) maximizes the Pearson correlation (cov(A,B)/σAσB) between each pair of
mapped features (X(`)R(`) ) across subjects.
Proof. By considering Φ̃(`) ∈ RV×V = E

[
(X(`))>X(`)

]
= (X(`))>X(`), the Pearson correlation

on (S.3) can be defined as follows:

max
R(i),R(j)

S∑
i=1

S∑
j=i+1

tr
(

(X(i)R(i))>X(i)R(j)√
((R(i))>Φ̃(i)R(i))

√
((R(j))>Φ̃(j)R(j))

)
. (S.4)

Since
(
R(`)

)>
Φ̃(`)R(`) = I, we approach from (S.4) to (S.3).

In fact, the constrains must be imposed in R(`) to avoid overfitting [2]. In order to seek an optimum
solution, solving (S.3) may not be the best approach because there is no scale to evaluate the distance
between current result and the optimum (fully maximized) solution [2, 4, 7].

Lemma S.2. (S.3) can be rewritten as following minimization problem:

min
R(i),R(j)

S∑
i=1

S∑
j=i+1

∥∥∥X(i)R(i) −X(j)R(j)
∥∥∥2
F

, s.t.
(
X(`)R(`)

)>
X(`)R(`) = I, ` = 1:S,

(S.5)

where (S.5) approaches zero for an optimum result.
Proof.

min
R(i),R(j)

S∑
i=1

S∑
j=i+1

∥∥∥X(i)R(i) −X(j)R(j)
∥∥∥2
F
= min

R(i),R(j)

S∑
i=1

S∑
j=i+1

(
tr
((

X(i)R(i)
)>

X(i)R(i)
)
+

tr
((

X(j)R(j)
)>

X(j)R(j)
)
− 2tr

((
X(i)R(i)

)>
X(j)R(j)

))
.

Since
(
X(`)R(`)

)>
X(`)R(`) = I, so we have:

min
R(i),R(j)

S∑
i=1

S∑
j=i+1

(
2Vnew − 2tr

((
X(i)R(i)

)>
X(j)R(j)

))
≡ max

R(i),R(j)

S∑
i=1

S∑
j=i+1

tr
(
(X(i)R(i))>X(j)R(j)

)
.

Indeed, the main assumption in the original HA is that the R(`), ` = 1:S are noisy ‘rotations’
of a common template [1, 9]. In order to extend HA into the real-world problems, (S.5) can be
reformulated by using an embedded space as follows:

min
R(i),R(j)

S∑
i=1

S∑
j=i+1

∥∥∥f(X(i)
)
R(i) − f

(
X(j)

)
R(j)

∥∥∥2
F

, s.t.
(
f
(
X(`)

)
R(`)

)>
f
(
X(`)

)
R(`) = I, ` = 1:S.

(S.6)
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Here, if f
(
x
)
= x, then we recover the original HA. Further, if f

(
x
)

denotes any classical fixed
kernel function (e.g. Gaussian), then (S.6) is equivalent to Kernel Hyperalignment (KHA) [3]. In
addition, if f

(
x
)

illustrates an SVD-based feature selection, then (S.6) is called SVD Hyperalignment
(SVDHA) [4]. Finally, this paper proposes Deep Hyperalignment (DHA), where f`

(
X(`);θ(`)

)
is

defined (rather than f
(
x
)
) as a parametric deep neural network across subjects, i.e. multiple stacked

layers of nonlinear transformation for each subject. As another alternative, (S.6) can be optimized by
using different approaches. For instance, Regularized Hyperalignment (RHA) used the Generalized

CCA
(

min
G,R(i)

∑S
i=1

∥∥∥G−X(i)R(i)
∥∥∥2
F

)
[2], Shared Response Model (SRM) employed Probabilistic

CCA [5]. This paper also uses rank-m SVD [9] and Stochastic Gradient Descent (SGD) [12] for
optimization.

S.5 Equations

This section presents the equations of the original paper that we need them in order to proof Lemmas
in the next section.

1. Objective function of DHA is defined as follows:

min
θ(i),R(i)

θ(j),R(j)

S∑
i=1

S∑
j=i+1

∥∥∥fi(X(i);θ(i)
)
R(i) − fj

(
X(j);θ(j)

)
R(j)

∥∥∥2
F

s.t.
(
R(`)

)>((
f`
(
X(`);θ(`)

))>
f`
(
X(`);θ(`)

)
+ εI

)
R(`) = I, ` = 1:S.

(3)

2. Projection matrix for `-th subject can be generated as follows: [10]

P(`) = f`
(
X(`);θ(`)

)((
f`
(
X(`);θ(`)

))>
f`
(
X(`);θ(`)

)
+ εI

)−1(
f`
(
X(`);θ(`)

))>
= Ω(`)

(
Σ(`)

)>(
Σ(`)

(
Σ(`)

)>
+ εI

)−1
Σ(`)

(
Ω(`)

)>
= Ω(`)D(`)

(
Ω(`)D(`)

)>
,

(8)

where diagonal matrix D(`) ∈ Rm×m is

D(`)
(
D(`)

)>
=
(
Σ(`)

)>(
Σ(`)

(
Σ(`)

)>
+ εI

)−1
Σ(`). (9)

3. The sum of projection can be defined as follows:

A =

S∑
i=1

P(i) = Ã
(
Ã
)>

, where Ã ∈ RT×mS =
[
Ω(1)D(1) . . .Ω(S)D(S)

]
. (10)

4. DHA mapping for `-th subject is denoted as follows:

R(`) =

((
f`
(
X(`);θ(`)

))>
f`
(
X(`);θ(`)

)
+ εI

)−1(
f`
(
X(`);θ(`)

))>
G. (12)

S.6 Proofs

Lemma 1. The equation (3) can be reformulated as follows where G ∈ RT×Vnew is the HA template:

min
G,R(i),θ(i)

S∑
i=1

∥∥∥G− fi(X(i);θ(i)
)
R(i)

∥∥∥2
F

s.t. G>G = I, where G =
1

S

S∑
j=1

fj
(
X(j);θ(j)

)
R(j).

(6)
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Proof. For simplicity, we consider that f`
(
X(`);θ(`)

)
= Y(`):

min
θ(i),R(i)

θ(j),R(j)

S∑
i=1

S∑
j=i+1

∥∥∥fi(X(i);θ(i)
)
R(i) − fj

(
X(j);θ(j)

)
R(j)

∥∥∥2
F
= min

θ(i),R(i)

θ(j),R(j)

S∑
i=1

S∑
j=i+1

∥∥∥Y(i)R(i) −Y(j)R(j)
∥∥∥2
F

= min
θ(i),R(i)

θ(j),R(j)

S∑
i=1

S∑
j=i+1

(
tr
((

Y(i)R(i)
)>

Y(i)R(i)
)
+ tr

((
Y(j)R(j)

)>
Y(j)R(j)

)
− 2tr

((
Y(i)R(i)

)>
Y(j)R(j)

))

≡ min
θ(i),R(i)

θ(j),R(j)

G

1

2

S∑
i=1

(
Str
((

Y(i)R(i)
)>

Y(i)R(i)
)
− 2Str

((
Y(i)R(i)

)>
G
)
+

S∑
j=1

(
tr
((

Y(j)R(j)
)>

Y(j)R(j)
)))

= min
θ(i),R(i)

θ(j),R(j)

G

1

2

((
S

S∑
i=1

tr
((

Y(i)R(i)
)>

Y(i)R(i)
))
−
(
2S2tr

(
G>G

))
+

(
S

S∑
j=1

tr
((

Y(j)R(j)
)>

Y(j)R(j)
)))

= min
θ(i),R(i)

G

1

2

((
2S

S∑
i=1

tr
((

Y(i)R(i)
)>

Y(i)R(i)
)
−
(
2S2tr

(
G>G

)))

= min
θ(i),R(i)

G

((
S

S∑
i=1

tr
((

Y(i)R(i)
)>

Y(i)R(i)
))
−
(
S2tr

(
G>G

)))

= min
θ(i),R(i)

G

((
S

S∑
i=1

tr
((

Y(i)R(i)
)>

Y(i)R(i)
))
− 2
(
S2tr

(
G>G

))
+
(
S2tr

(
G>G

)))

= min
θ(i),R(i)

G

S

S∑
i=1

(
tr
((

Y(i)R(i)
)>

Y(i)R(i)
)
+ tr

(
G>G

)
− 2tr

((
Y(i)R(i)

)>
G
))

≡ min
θ(i),R(i)

G

S∑
i=1

‖G−Y(i)R(i)‖2F = min
G,R(i),θ(i)

S∑
i=1

∥∥∥G− fi(X(i);θ(i)
)
R(i)

∥∥∥2
F
�

Lemma 2. Based on (10), the objective function of DHA (6) can be rewritten as follows:

min
G,R(i),θ(i)

S∑
i=1

∥∥∥G− fi(X(i);θ(i)
)
R(i)

∥∥∥ ≡ max
G

(
tr
(
G>AG

))
. (10)

Proof. For simplicity, we consider that f`
(
X(`);θ(`)

)
= Y(`). By considering (12), we have:

min
G,θ(i),R(i)

S∑
i=1

∥∥∥G−Y(i)
((

Y(i)
)>

Y(i) + εI
)−1(

Y(i)
)>

G
∥∥∥2
F

Based on (8), we have:

min
G

S∑
i=1

‖G−P(i)G‖2F = min
G

S∑
i=1

‖
(
I−P(i)

)
G‖2F = min

G

S∑
i=1

tr
(((

I−P(i)
)
G
)>(

I−P(i)
)
G

)

= min
G

S∑
i=1

tr
(

G>
(
I−P(i)

)>(
I−P(i)

)
G

)
= min

G

S∑
i=1

tr
(

G>
(
I−P(i)

)2
G

)
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Since P(i) is idempotent (
(
P(i)

)2
= P(i)) [10, 11], we have:

min
G

S∑
i=1

tr
(

G>
(
I−P(i)

)2
G

)
= min

G

S∑
i=1

tr
(

G>
(
I2 +

(
P(i)

)2 − 2IP(i)
)
G

)

= min
G

S∑
i=1

tr
(

G>
(
I2 + P(i) − 2P(i)

)
G

)
= min

G

S∑
i=1

tr
(

G>
(
I−P(i)

)
G

)

= min
G

S∑
i=1

tr
(

G>IG−G>P(i)G

)
= min

G

S∑
i=1

(
tr
(
I
)
− tr

(
G>P(i)G

))

= min
G

(
SV − tr

(
G>
( S∑
i=1

P(i)
)
G
))

Based on (10), we have:

= min
G

(
SV − tr

(
G>AG

))
≡ max

G

(
tr
(
G>AG

))
�

Lemma 3. In order to update network parameters as the second step, the derivative of Z =
∑T
`=1 λ`,

which is the sum of eigenvalues of A, over the mapped neural activities of `-th subject is defined as
follows:

∂Z

∂f`
(
X(`);θ(`)

) = 2R(`)G> − 2R(`)
(
R(`)

)>(
f`
(
X(`);θ(`)

))>
(13)

Proof. Based on the parameters (regularization, template, mappings, etc.) in DHA, we present a
modified version of the Appendix A proof proposed in [11]. For simplicity, we define f`

(
X(`);θ(`)

)
=

Y(`) and the covariance matrix for `-th subject as follows:

Φ̃(`) =
((

Y(`)
)>

Y(`) + εI
)

(S.7)

Further, the inverse of the covariance matrix is denoted for `-th subject as follows:

Φ(`) =
(
Φ̃(`)

)−1
=
((

Y(`)
)>

Y(`) + εI
)−1

(S.8)

where this matrix is symmetric (Φ(`) =
(
Φ(`)

)>
). Based on (S.8), the projection (8) can be rewritten

as follows:
P(`) = Y(`)Φ(`)

(
Y(`)

)>
(S.9)

Further, the final mappings (12) can be reformulated as follows:

R(`) = Φ(`)
(
Y(`)

)>
G (S.10)

Since ∂Z/∂A = GG> [14], we reformulate the left side of (13) based on the chain rule as follows:

∂Z

∂Y
(`)
αβ

=

Vnew∑
µ,τ=1

∂Z

∂Aµτ

∂Aµτ

∂Y
(`)
αβ

=

Vnew∑
µ,τ=1

(
GG>

)
τµ

∂Aµτ

∂Y
(`)
αβ

(S.11)

By considering (10), the product rule, and this key point that P(`) is the only projection related to
Y(`), we have:

∂Aµτ

∂Y
(`)
αβ

=
∂P

(`)
µτ

∂Y
(`)
αβ

= δµβ

Vnew∑
i=1

Y
(`)
τi Φ

(`)
αi + δτβ

Vnew∑
j=1

Y
(`)
µj Φ

(`)
jα +

Vnew∑
i,j=1

Y
(`)
µj Y

(`)
τi

∂Φ
(`)
ji

∂Y
(`)
αβ

= δµβ

(
Φ(`)

(
Y(`)

)>)
ατ

+ δτβ

(
Φ(`)

(
Y(`)

)>)
αµ

+

Vnew∑
i,j=1

Y
(`)
µj Y

(`)
τi

∂Φ
(`)
ji

∂Y
(`)
αβ

(S.12)
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The last term also can be calculated by using the chain rule as follows:

∂Φ
(`)
ji

∂Y
(`)
αβ

=

T∑
m,n=1

∂Φ
(`)
ji

Φ̃
(`)
mn

Φ̃
(`)
mn

∂Y
(`)
αβ

= −
T∑

m,n=1

(
Φ

(`)
jmΦ

(`)
ni

(
δαmY

(`)
βn + δαnY

(`)
βm

))

= −
T∑
n=1

Φ
(`)
jαΦ

(`)
ni Y

(`)
βn −

T∑
m=1

Φ
(`)
jmΦ

(`)
αiY

(`)
βm = −Φ

(`)
jα

(
Φ(`)

(
Y(`)

)>)
iβ
−Φ

(`)
αi

(
Φ(`)

(
Y(`)

)>)
jβ

(S.13)

By applying (S.13) to (S.12), we have:

∂P
(`)
µτ

∂Y
(`)
αβ

= δµβ

(
Φ(`)

(
Y(`)

)>)
ατ

+ δτβ

(
Φ(`)

(
Y(`)

)>)
αµ
−
(
Φ(`)

(
Y(`)

)>)
αµ

(
Y(`)Φ(`)

(
Y(`)

)>)
βτ

−
(
Φ(`)

(
Y(`)

)>)
ατ

(
Y(`)Φ(`)

(
Y(`)

)>)
βµ

= δµβ

(
Φ(`)

(
Y(`)

)>)
ατ

+ δτβ

(
Φ(`)

(
Y(`)

)>)
αµ
−(

Φ(`)
(
Y(`)

)>)
αµ

(
P(`)

)
βτ
−
(
Φ(`)

(
Y(`)

)>)
ατ

(
P(`)

)
βµ

=(
I−P(`)

)
βτ

(
Φ(`)

(
Y(`)

)>)
αµ

+
(
I−P(`)

)
βµ

(
Φ(`)

(
Y(`)

)>)
ατ

(S.14)

Finally, we can calculate (13) as follows:

∂Z

∂Y
(`)
αβ

=

T∑
µ,τ=1

((
GG>

)
µτ

(
I−P(`)

)
µβ

(
Φ(`)

(
Y(`)

)>)
ατ

)

+

T∑
µ,τ=1

((
GG>

)
µτ

(
I−P(`)

)
τβ

(
Φ(`)

(
Y(`)

)>)
αµ

)
= 2

(
Φ(`)

(
Y(`)

)>
GG>

(
I−P(`)

))
αβ

(S.15)

Consequently, we have:

∂Z

∂Y(`)
= 2Φ(`)

(
Y(`)

)>
GG>

(
I−P(`)

)
By considering (S.10), we have:

∂Z

∂Y(`)
= 2R(`)G>

(
I−P(`)

)
= 2R(`)G> − 2R(`)G>P(`)

By applying (S.9), we have:

= 2R(`)G> − 2R(`)G>Y(`)Φ(`)
(
Y(`)

)>
Since Φ(`) is symmetric:

= 2R(`)G> − 2R(`)G>Y(`)
(
Φ(`)

)>(
Y(`)

)>
and again using (S.10), we finally have:

∂Z

∂Y(`)
= 2R(`)G> − 2R(`)

(
R(`)

)>(
Y(`)

)>
=⇒ ∂Z

∂f`
(
X(`);θ(`)

) = 2R(`)G> − 2R(`)
(
R(`)

)>(
f`
(
X(`);θ(`)

))>
�

S.7 Experiment Schemes

This section presents experiment schemes. As the first step, each dataset is separately preprocessed by
FSL 5.0.9 (https://fsl.fmrib.ox.ac.uk), i.e. slice timing, anatomical alignment, normalization,
smoothing. Here, each session is preprocessed independently. Further, this paper separately applies

6

https://fsl.fmrib.ox.ac.uk


the anatomical alignment to each session (i.e. whole-brain image) for visualizing the neural activities
in the MNI space and calibrating the Regions of Interests (ROIs). Then, ROIs are denoted by
employing the main reference of each dataset. As the next step, we have partitioned preprocessed
data to the training set and testing set for each iteration by using one-subject-out cross-validation.
Next, the training set is applied to different HA methods. Same as the previous studies [2-7], the
HA parameters are selected based on the lowest alignment error among the training data (the error
is estimated by using line 10 in Algorithm 1) for both the proposed method and other methods
(RHA, KHA, SRM, and CAE). Here, the structure of the deep network in the proposed method is
defined based on the error of functional alignment (line 10 in Algorithm 1), i.e. activation function,
regularization term, learning rate, and numbers of layers and units. As the last step in the training
phase, the aligned data are employed for learning a classification (cognitive) model (without changing
the alignment parameters). In the testing phase, we just applied the test data to the generated model
without changing the estimated parameters of the training phase. Indeed, we try to demonstrate the
effect of functional alignment on the performance of the final classification model. In other words,
we consider whole of the classification procedure is fixed except the alignment section, i.e. the same
preprocessed dataset for each iteration, the same learning algorithm, the same parameters for learning,
etc. We have to emphasize that the same preprocessed datasets are applied to all HA methods in each
iteration of the cross-validation.
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Table S1: Variables or Functions

Variable or Function Description
R The set of real numbers.
I The identity matrix.

i, j, `,m, n, α, β, µ, τ The indices.
K The number of stimulus categories.
S The number of Subjects.
T The number of time points in unites of TRs (Time of Repetition).
V The number of voxels in the original representation space.

Vnew The number of features after applying the Artificial Neural Network (ANN).
C The number of layers in ANN.

U (m) The number of units in m-th intermediate layers of ANN.
ε The regularized constant.

X(`) =
{
x
(`)
mn

}
∈ RT×V The original neural activities for `-th subject.

R(`) HA or DHA mapping for `-th subject.
θ(`)=

{
W

(`)
m , b

(`)
m , m=1:C

}
The parameters of ANN for `-th subject.

h
(`)
m = g(. . . ) The result of activation function for `-th subject and m-th layer.

f`
(
X(`);θ(`)

)
= Y(`) The cognitive features for `-th subject after applying ANN.

G ∈ RT×Vnew The DHA template.
Q ∈ RVnew×Vnew An orthogonal matrix for mapping two different DHA template to each other.

f`
(
X(`);θ(`)

) SV D
= Ω(`)Σ(`)

(
Ψ(`)

)> The SVD decomposition of mapped cognitive features for `-th subject.
Φ̃(`) The covariance matrix for `-th subject (just used in this document)
Φ(`) The inverse of covariance matrix for `-th subject (just used in this document)
P(`) The projection of cognitive features for `-th subject.
D(`) The diagonal matrix used for decomposition of P(`) for `-th subject.

A = ÃÃ> Sum of all projections and its Cholesky decomposition.
Λ =

{
λ1 . . . λT

}
Eigenvalues of A.

Z =
∑T

`=1 λ` Sum of eigenvalues of A.
η Learning rate.

∇θ(`) The gradient of ANN parameters for `-th subject.
γm Error of m-th iteration.

k1, k3, λ, ρ Convolutional Autoencoder (CAE) parameters.
tr() The trace function.

backprop() The back-propagation function.
g(x) = 1

1+exp(−x)
Sigmoid function.

g(x) = tanh(x) = exp(x)−exp(−x)
exp(x)+exp(−x)

Hyperbolic function.
g(x) = ln(1 + exp(x)) Rectified Linear Unit (ReLU).

Table S2: The datasets.

Title ID S K T V X Y Z Scanner TR TE
Mixed-gambles task DS005 48 2 240 450 53 63 52 S 3T 2 30
Visual Object Recognition DS105 71 8 121 1963 79 95 79 G 3T 2.5 30
Word and Object Processing DS107 98 4 164 932 53 63 52 S 3T 2 28
Auditory and Visual Oddball DS116 102 2 170 2532 53 63 40 P 3T 2 25
Multi-subject, multi-modal DS117 171 2 210 524 64 61 33 S 3T 2 30
Forrest Gump DS113 20 10 451 2400 160 160 36 S 7T 2.3 22
Raiders of the Lost Ark N/A 10 7 924 980 78 78 54 S 3T 3 30

S is the number of subject; K denotes the number of stimulus categories; T is the number of scans in unites of
TRs (Time of Repetition); V denotes the number of voxels in ROI; X, Y, Z are the size of 3D images; Scanners
include S=Siemens, G = General Electric, and P = Philips in 3 Tesla or 7 Tesla; TR is Time of Repetition in
millisecond; TE denotes Echo Time in second; Please see openfmri.org for more information.
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Figure S1: Visualizing average of active regions in common space across category of visual stimuli
by using DS105 dataset
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Figure S2: Graphical abstract of Deep Hyperalignment (DHA)
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