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Abstract

Multi-voxel pattern analysis (MVPA) learns predictive models from task-based
functional magnetic resonance imaging (fMRI) data, for distinguishing when
subjects are performing different cognitive tasks — e.g., watching movies or making
decisions. MVPA works best with a well-designed feature set and an adequate
sample size. However, most fMRI datasets are noisy, high-dimensional, expensive
to collect, and with small sample sizes. Further, training a robust, generalized
predictive model that can analyze homogeneous cognitive tasks provided by multi-
site fMRI datasets has additional challenges. This paper proposes the Shared
Space Transfer Learning (SSTL) as a novel transfer learning (TL) approach that
can functionally align homogeneous multi-site fMRI datasets, and so improve
the prediction performance in every site. SSTL first extracts a set of common
features for all subjects in each site. It then uses TL to map these site-specific
features to a site-independent shared space in order to improve the performance
of the MVPA. SSTL uses a scalable optimization procedure that works effectively
for high-dimensional fMRI datasets. The optimization procedure extracts the
common features for each site by using a single-iteration algorithm and maps
these site-specific common features to the site-independent shared space. We
evaluate the effectiveness of the proposed method for transferring between various
cognitive tasks. Our comprehensive experiments validate that SSTL achieves
superior performance to other state-of-the-art analysis techniques.

1 Introduction

The task-based functional magnetic resonance imaging (fMRI) is one of the prevalent tools in
neuroscience to analyze how human brains work [1–5]. It can be used to visualize the neural activities
when subjects are performing cognitive tasks — such as watching photos or making decisions [1].
Since brain images are high-dimensional and noisy, most of the recent neuroimage studies utilize
machine learning approaches such as classification techniques for analyzing fMRI datasets [1, 2].
Multi-voxel pattern analysis (MVPA) learns a classification model based on a set of fMRI responses
(with labels), which can be used to predict the cognitive tasks performed by a novel subject, who was
not part of the training phase [1]. An accurate MVPA model needs a well-designed feature space
and sufficient number of training instances [1–3]. However, most fMRI datasets include a limited set
of samples because collecting neuroimage data is an expensive procedure and needs a wide range
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of agreements [2, 3]. As an alternative, increasing the number of publicly available fMRI datasets
motivate the idea of combining multi-site homogeneous cognitive tasks (i.e., all performing the same
set of fMRI tasks) in order to increase the sample size, which we hope will boost the accuracy of
the predictive models [2]. The best examples are the (U.S.) National Institute of Mental Health
(NIMH)2 [2] and Open NEURO3 [7] projects that share thousands of fMRI scans with various types
of cognitive tasks [2, 3].

It is challenging to train a generalized classification model from multi-site fMRI datasets, all involving
the same set of homogeneous cognitive tasks [2, 3, 6]. There are two significant issues, viz., differences
in brain connectomes, and batch effects [2, 3]. As every human brain has a different connectome,
each person will have a different neural response for the same stimulus [1]. Recent studies suggested
applying functional alignment as an extra processing step before generating a prediction model for
fMRI analysis [1, 3–5]. This functional alignment process extracts a set of common features from
multi-subject fMRI data, which can be used to boost the prediction rate [3–5]. However, functional
alignment techniques need temporal alignment — i.e., the i-th time point for all subjects must involve
the same type of cognitive task [4, 5]. Although applying temporal alignment to a single-site fMRI
data is a relatively straightforward process, this approach cannot be directly used for any multi-site
datasets with different schemes of experimental designs [3, 4]. As another issue, batch effects [6]
refers to a set of external elements that may affect the distribution of collected fMRI data in each site
— e.g., the environment noise, standards that are used by vendors of fMRI machines, etc. To deal with
these issues, recent studies [2, 3, 8–10] show that transfer learning (TL) can significantly improve
the quality of classification models for a multi-site fMRI analysis by leveraging the existing domain
knowledge of the homogeneous cognitive tasks.

As the primary contribution of this paper, we propose Shared Space Transfer Learning (SSTL) as
a novel TL approach that can generate a robust, generalized, accurate classification model from
multi-site fMRI datasets, which can then be used effectively over each of these sites. SSTL learns
a shared feature space by using a hierarchical two-step procedure. It first extracts a set of common
features for all subjects in each site and then uses TL to map these site-specific features to a site-
independent shared space. Further, SSTL uses a scalable optimization algorithm that works effectively
for high-dimensional fMRI datasets with a large number of subjects. The optimization procedure
extracts the common features for each site by using a single iteration multi-view approach and then
maps these site common features to the site-independent shared space.

The rest of this paper is organized as follows: Section 2 briefly introduces some related works.
Section 3 presents our proposed method. Section 4 reports the empirical studies, and finally, Section 5
presents the conclusion and points out some future works.

2 Related Works

Transfer learning (TL) has a wide range of applications in machine learning — e.g., computer vision,
or neural language processing [2, 3, 8–10]. However, most of TL techniques cannot be directly used
for fMRI analysis [2]. There are several issues [2, 3]. First, fMRI signals (voxel values) have different
properties in comparison with other types of data — such as natural images or texts [2]. In particular,
the brain signals are highly-correlated with a low rate of the signal to noise ratio (SNR) that relies
heavily on derived properties [4]. Moreover, each person has a different neural response for each
individual stimulus because different brains have different connectomes [1, 2, 5]. Recent (single
site) studies show that the neural responses of all subjects (in that site) can be considered as the noisy
rotations of a common template [1, 3–5].

We use homogeneous TL approaches for task-based fMRI analysis, where the feature and label space
in all sites are the same domain [2, 3]. These techniques minimize data distribution mismatch across
all sites [2] — i.e., mapping features of all sites to a shared space [3, 11, 12], or jointly learning
a classification model and shifting all sites distributions that aim for a better accuracy rate [2, 13,
14]. Some TL techniques use a nonlinear transformation to fix the distribution mismatch — such as
manifold embedded distribution alignment (MEDA) [14], AlexNet [15], and autoencoder [16]. Yan
et al. recently developed the maximum independence domain adaptation (MIDA) [17] that uses the
Hilbert-Schmidt Independence Criterion (HSIC) [18] to learn a set of common features across all
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sites by minimizing statistical dependence on auxiliary domain side information [2, 17]. Inspired
by the MIDA approach, Zhou et al. also proposed the Side Information Dependence Regularization
(SIDeR) framework as a homogeneous TL designed for task-based fMRI analysis [2]. SIDeR uses
HSIC and maximum mean discrepancy (MMD) to train a multi-site TL model that can simultaneously
minimize the prediction risk and the mismatch on each site domain (common) information [2].

Multi-site fMRI analysis approaches can be seen in two ways — viz., single-view methods [2, 6, 8–
19], and multi-view techniques [3, 5]. As mentioned before, the same stimulus may imply distinctive
neural responses because each brain has neurologically different connectome from other brains [1, 4,
5]. The single-view approaches do not accommodate these neurological differences between subjects
of an individual site and consider all of them as a single distribution that must match with other
sites distribution [2, 6, 8, 20]. Alternatively, the multi-view methods consider the neural activities
belonging to each subject as a unique view and then learns a set of (site-specific) common features
across all subjects [3–5]. Shared Response Model (SRM) [5] and Hyperalignment [1, 4] are the best
examples of multi-view approaches that can align neural responses, but they work most effectively
on an individual site. Recently, some studies showed that these techniques also could be used for
transferring the cognitive tasks between multi-site fMRI datasets [2]. Based on these multi-view
methods, Zhang et al. developed multi-dataset dictionary learning (MDDL) and multi-dataset multi-
subject (MDMS) as two matrix factorization approaches that can learn accurate models for multi-site
fMRI analysis [2]. MDDL uses a multi-view dictionary learning, and MDMS uses the probabilistic
SRM [5] approach to generate the shared space [2]. Even though MDDL and MDMS can boost
the performance accuracy, they are limited to transfer the cognitive tasks between multi-site fMRI
datasets, as they require that some subjects appear in each pair of sites [3].

3 The Proposed Method

This section introduces the proposed Shared Space Transfer Learning (SSTL) as a novel TL approach
that can improve the performance of the MVPA on homogeneous multi-site fMRI datasets. SSTL
learns a TL model by using a hierarchical two-step procedure: It first extracts a set of site-specific
common features for all subjects in each site and then transfers these common features to a site-
independent, global, shared space. Unlike earlier models [3], SSTL does not require that some
subjects appear in each pair of sites.

We let D be the number of sites, Sd be the number of subjects in d-th site, Td be the number
of time-points in units of Time of Repetitions (TRs) for each subjects in d-th site, and V be the
number of voxels (which we view as a 1D vector, even though it corresponds to a 3D volume). The
preprocessed brain image (neural responses) for s-th subject in d-th site is defined as X(d,s) ∈
RTd×V =

{
x
(d,s)
tv | t = 1 . . . Td, v = 1 . . . V

}
, s = 1 . . . Sd, d = 1 . . . D. In this paper, we make

three assumptions. First, we assume that each column of the neural activities are standardized during
preprocessing — i.e., X(d,s) ∼ N (0, 1), s = 1 . . . Sd, d = 1 . . . D. Second, temporal alignment
is applied during preprocessing to neural responses of each site separately [1, 3–5]. Third, the
v-th column in X(d,s) denotes the anatomically aligned voxel that is located in the same locus for
fMRI images in all sites [1–6]. For instance, we can register fMRI images of all sites to Montreal
neurological institute (MNI) standard space and then apply the same mask to extract voxel values in
the region of interest (ROI) or even use the standard whole-brain images.

3.1 Extracting site-specific common features

In this section, we develop an unsupervised multi-view method that can extract site-specific common
features from every site separately. Let k be the number of features in the common feature space. We
calculate a mapping matrix R(d,s) ∈ RV×k, k ≤ V to transform each subject neural responses to the
common feature space G(d,Sd) ∈ RTd×k =

{
g
(d,Sd)
tv | t = 1 . . . Td, v = 1 . . . k

}
. We use following

objective function to extract the mapping matrices and the common feature space for d-th site, where
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Ik ∈ {0, 1}k×k is the identity matrix of size k:

J (d)
C

(
[X(d,s)]s=1...Sd

)
= arg min

R(d,s),G(d,Sd)

Sd∑
s=1

∥∥∥G(d,Sd) −X(d,s)R(d,s)
∥∥∥2
F
,

subject to
(
G(d,Sd)

)>
G(d,Sd) = Ik.

(1)

We first propose regularized projection matrices and then use these matrices to estimate an optimal
result for (1). We let ε be a regularization term, and X(d,s) = U(d,s)Σ(d,s)

(
V(d,s)

)>
be the rank-k

singular value decomposition (SVD) [23] of the neural responses. The regularized projection matrix
belonging to the s-th subject in the d-th site is denoted by: [4, 21–23]

P(d,s) = X(d,s)
(
X(d,s)

(
X(d,s)

)>
+ εITd

)−1(
X(d,s)

)>
= U(d,s)Φ(d,s)

(
U(d,s)Φ(d,s)

)>
, (2)

Φ(d,s)
(
Φ(d,s)

)>
= Σ(d,s)

(
Σ(d,s)

(
Σ(d,s)

)>
+ εITd

)−1(
Σ(d,s)

)>
. (3)

Lemma 1. Let R(d,s) =
(
X(d,s)

(
X(d,s)

)>
+ εITd

)−1(
X(d,s)

)>
G(d,Sd), s = 1 . . . Sd be the

transformation matrices for d-th site. Then, a regularized version of (1) can be written based on the
common space G(d,Sd) and the projection matrix P(d,s):

J̃ (d)
C

(
[X(d,s)]s=1...Sd

)
= arg max

G(d,Sd)

(
tr
((

G(d,Sd)
)> Sd∑

s=1

P(d,s)G(d,Sd)
))

, (4)

Proof. Please refer to supplemental material.
Remark 1. We can consider no regularization term (ε = 0) for calculating the projection matri-
ces (P(d,s)), which implies J̃ (d)

C

(
[X(d,s)]s=1...Sd

)
= J (d)

C

(
[X(d,s)]s=1...Sd

)
. However, using no

regularization may lead to an ill-posed analysis procedure. Since X(d,s) ∼ N (0, 1), the scatter
matrices X(d,s)

(
X(d,s)

)>
in (2) have properties of the Covariance matrices. Therefore, the scatter

matrices are positive semidefinite and may be non-invertible [3–5, 21]. This is problematic especially
when we select k > min(V, Td) [4, 21]. Considering ε > 0 as a positive regularization term
can enable us to apply additional L2 regularization to (1) and skip the non-invertible issue — i.e.,
J̃ (d)
C

(
[X(d,s)]s=1...Sd

)
≈ J (d)

C

(
[X(d,s)]s=1...Sd

)
.

Set G(d,0) = {0}Td×k to be the initial common space for d-th site, and let:

H(d,s) = P(d,s) −G(d,s−1)
(
G(d,s−1)

)>
P(d,s) for s = 1 . . . Sd. (5)

We calculate H(d,s) = M(d,s)N(d,s) for s = 1 . . . Sd as QR decomposition of H(d,s), where
M(d,s)

(
M(d,s)

)>
= ITd

and N(d,s) ∈ RTd×Td is an upper triangular matrix. Further, we let Σ̃(d,s)

be diagonal matrices for all s, initialized as Σ̃(d,0) = diag({0}k). Then, we calculate:

A(d,s) =

 Σ̃(d,s−1)
(
G(d,s−1)

)>
P(d,s)

{0}Td×k N(d,s)

 for s = 1 . . . Sd. (6)

Now, we let A(d,s) = Ũ(d,s)Σ̃(d,s)
(
Ṽ(d,s)

)>
be the rank-k SVD decomposition [21, 22] for the

generated matrices in (6) — with the left unitary matrix Ũ(d,s) ∈ R(Td+k)×k and the diagonal matrix
Σ̃(d,s) ∈ Rk. We then calculate following matrices:

B(d,s) =
[

G(d,s−1) M(d,s)
]

for s = 1 . . . Sd. (7)

Finally, we have:
G(d,s) = B(d,s)Ũ(d,s) for s = 1 . . . Sd. (8)

Here, G(d,Sd) for d = 1 . . . D are the site-specific common feature spaces that must be calculated for
each site separately. Note that the main advantage of this approach is that there is an efficient way to
update the common space, to incorporate a new subject: We only need to repeat the same procedure
by using the current common space G(d,Sd) and the data from the new subject X(d,Sd+1).
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3.2 Transferring site-specific common features to a global shared space

Our research aims to create a TL model for multi-site fMRI analysis by using site-specific common
features, but not by directly transferring the raw neural responses [2] nor by finding a global shared
space based on a set of subjects that are appeared in each pair of sites [3]. In this section, we partition
our sites to a set of training sites and and a set of testing sites. We create a global shared space
based on the common features of the training sites. We then use this global space to transfer neural
responses in the testing site. We let D̃ be the number of training sites, T̃ =

∑D̃
d=1 Td, and D̂ be the

number of testing sites — i.e., D = D̃+ D̂. As the first step, we use the site-specific common spaces
G(d,Sd) for d = 1 . . . D̃ to generate a global shared space. For simplicity, we denote a concatenated
version of all common spaces in the training set as follows:

G ∈ RT̃×k =
{
gtv | t = 1 . . . T̃ , v = 1 . . . k

}
=


G(1,S1)

G(2,S2)

...
G(D̃,S

D̃
)

. (9)

In this paper, we want to find a global shared space whose transformed common features have a
minimum distribution mismatch. Let gt. ∈ Rk be the t-th row of matrix G. Here, we want to
find a pair of encoding/decoding transformation functions. The encoding transformation function
qt. = J1(gt.; θ1) maps the common features (from a specific site) into a global shared space —
where qt. is the t-th transformed common feature in the shared space. The decoding function
ḡt. = J2(qt.; θ2) reconstructs the site-specific common features from the shared space. In general,
we can use following objective function for finding these encoding/decoding transformations:

JG
(
G
)

= arg min
θ1,θ2

T̃∑
t=1

∥∥∥gt. − ḡt.

∥∥∥2
F

+ Ω(θ1, θ2) (10)

where Ω is a regularization function over the parameters θ1, θ2. There are several standard approaches
in machine learning for solving (10). For instance, we can use regularized autoencoders for finding
these transformations — where J1,J1 are the symmetric multilayer perceptron (MLP) [22]. However,
complex models need a large number of instances to significantly boost the performance of analysis,
and most of multi-site fMRI datasets do not have enough instances [2]. In this paper, we propose the
following linear Karhunen–Loeve transformation (KLT) [24] for learning the global shared space:

J̃G
(
G
)

= arg min
W

∥∥∥G−GWW>
∥∥∥2
F
,

subject to W>W = Ik.

(11)

where W ∈ Rk×k denotes a transformation matrix, Q = J1(G; W) = GW, and Ḡ =
J2(Q; W>) = QW>. For finding the proposed shared space in (11), we first calculate zero-mean
second moment of the matrix G as follows:

C =
1

T − 1

(
G− 1Tµ

>
)>(

G− 1Tµ
>
)
, (12)

where 1T ∈ {1}T×1 denotes a column vector of all ones, row vector µ ∈ Rk×1 is the mean from each
row of the matrix G — i.e., v-th element in vector µ is calculate by µv = 1

T

∑T
t=1 gtv for v = 1 . . . k.

Finally, we can solve following eigendecomposition problem for finding the transformation matrix W:

W>CW = Λ (13)
where Λ and W are respectively the eigenvalues and eigenvectors of the matrix C.

The SSTL learning procedure starts by generating the common feature space for each site separately
— i.e., G(d,Sd) for d = 1 . . . D. Then, it calculates the transformation matrix W by using the common
feature in the training set, G(d,Sd) for d = 1 . . . D̃. Next, SSTL trains a classification model by
using the transformed features in the training set — viz., [X(d,s)R(d,s)W]d=1...D̃,s=1...Sd

. Finally,
we can evaluate the resulting multi-site TL model based on its accuracy on the transformed testing set
[X(d,s)R(d,s)W]d=1...D̂,s=1...Sd

. The Supplementary Material shows the SSTL learning procedure.
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Table 1: The datasets.

ID Title (Open NEURO ID) Type Sd #1 Td #2 #3
A Stop signal with spoken pseudo word naming (DS007) [25] Decision 20 4 149 B, C B, C, D
B Stop signal with spoken letter naming (DS007) [25] Decision 20 4 112 A, C A, C, D
C Stop signal with manual response (DS007) [25] Decision 20 4 211 A, B A, B, D
D Conditional stop signal (DS008) [26] Decision 13 4 317 A, B, C
E Simon task (DS101) (unpublished [2]) Simon 21 2 302 F
F Flanker task (DS102) [27] Flanker 26 2 292 E
G Integration of sweet taste – study 1 (DS229) [28] Flavour 15 6 580 H H
H Integration of sweet taste – study 3 (DS231) [28] Flavour 9 6 650 G G

Sd is the number of subject; #1 is the number of stimulus categories; Td is the number of time points per subjects; #2 lists the other datasets

that overlap with this dataset; #3 lists the other datasets whose neural responses can be transferred to this dataset.

4 Experiments

Table 1 lists the 8 datasets (A to H) used for our empirical studies. These datasets are provided by
Open NEURO repository and are separately preprocessed by easy fMRI4 and FSL 6.0.15 — i.e.,
normalization, smoothing, anatomical alignment, temporal alignment. We also registered each scan
to the MNI152 T1 standard space with voxel size 4mm, so total number of voxels is V = 19742. We
shared all preprocessed datasets in the MATLAB format6.

We compare SSTL with 6 different existing methods: raw neural responses in MNI space without
using TL methods [3], the shared response model (SRM) [3, 5], the maximum independence domain
adaptation (MIDA) [17], the Side Information Dependence Regularization (SIDeR) [2], the multi-
dataset dictionary learning (MDDL) [3], and the multi-dataset multi-subject (MDMS) [3]. We used
the implementations proposed in [3] for SRM, MDDL, and MDMS. Note those techniques are limited
as they can only transfer cognitive tasks between multi-site fMRI datasets if some subjects appear in
each pair of sites. Further, we used a PC with certain specifications7 for generating the experimental
studies. All algorithms for generating the experimental studies are shared as parts of our GUI-based
toolbox called easy fMRI4.

Like the previous studies [2–5, 22], we use ν-support vector machine (ν-SVM) [29] for classification
analysis. Here, we only allow the neural responses belonging to a site to be used in either the training
phase or testing phase, but not both. In the training phase, we use a one-subject-out strategy for each
training site to generate the validation set — i.e., all responses of a subject are considered as the
validation set, and the other responses are used as the training set. We repeat the training phase until
all subjects in a site have the chance to be the validation set. For instance, we want to learn a TL
model from site A to predict all neural responses in site B (A→ B). Here, we have SA subjects on
site A. We learn SA independent models, where each of them is trained by the neural responses of
all subjects in site A except the s-th subject and tune by using neural responses of s-th subject —
s ∈ {1 . . . SA}. We evaluate each of these SA models on the neural responses of site B, then report
the average of these SA evaluations as the performance of the “A→ B” transference.

We used a scheme similar to the one proposed in [2–3] for evaluating all transfer learning approaches
described in this paper. Our proposed SSTL first computes the unsupervised site-dependent G(d,Sd),
from the data, but not the labels, for all sites. Note this is similar to the procedures used in learning
any classical functional alignment, such as SRM and HA. For classifying a subject in site d, SSTL
then uses the labeled data from other d− 1 sites to find the global shared space W, then train the
classifier — n.b., using nothing from the d-th site. Hence, SSTL never uses any labels from the d-th
site, when computing the labels for those d-th site subjects. Like Westfall et al. [20], SSTL also
used the standard learning procedure, i.e., using a shuffled form of neural responses for training the
classifier (not the temporally aligned version).

4https://easyfmri.learningbymachine.com/
5https://fsl.fmrib.ox.ac.uk/
6Available at https://easydata.learningbymachine.com/
7 Main: Giga X399, CPU: AMD Ryzen Threadripper 2920X (24×3.5 GHz), RAM: 128GB, GPU: NVIDIA

GeForce RTX 2080 SUPER (8GB memory), OS: Fedora 33, Python: 3.8.5, Pip: 20.2.3, Numpy: 1.19.2,
Scipy: 1.5.2, Scikit-Learn: 0.23.2, MPI4py: 3.0.3, PyTorch: 1.6.0.
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Figure 1: Multi-site classification analysis for datasets that overlap (i.e., share some subjects). Error
bars illustrate ±1 standard deviation.

We tune the hyper-parameters — regularization ε ∈ {10−2, 10−4, 10−6, 10−8}, number of features k,
maximum number of iterations L — by using grid search based on the performance of the validation
set. As mentioned before, SSTL just sets L = 1, but other TL techniques (such as SRM, MDDL,
MSMD, etc.), we consider L ∈ {1, 2, ..., 50} . For selecting the number of features k, we first let
k1 = min(V, Td) for d = 1 . . . D̃ [4]. Then, we benchmark the performance of analysis by using
k = αk1, where α = {0.1, 0.5, 1, 1.1, 1.5, 2}. We report the performance evaluation of all one-way
analysis (e.g., A → B) in the Supplementary Material. For simplicity, we report the average of
evaluations for each pair of these one-way analyses in the rest of this paper — e.g., acc( A 
 B )
denotes the average of evaluations for pairs acc( A→ B ), and acc( B→ A ).

4.1 Multi-site classification analysis for pairs of datasets that overlap

In this section, we report multi-site fMRI analysis by using datasets (i.e., A, B, C, G, H) with some
subjects that appear in each pair of sites. As mentioned before, SRM, MDDL, and MDMS require
these pair-site subjects [3]. Here, we reported two levels of analysis — viz., a peer to peer analysis,
and the multi-site analysis. In a peer to peer analysis, we first learn a TL model from a single
site to predict neural responses in another single site — e.g., A 
 B. Figures 1[a–d] illustrate the
peer-to-peer analysis. We also benchmark the performance of TL models when there are more
than two sites during an analysis — e.g., (A, B) 
 C. Figures 1[e–g] show the accuracies of these
multi-site analyses, showing that the raw neural responses (in MNI space) perform poorly — perhaps
because of the distribution mismatch in different sites. While single view approaches (MIDA and
SIDeR) do perform better, they do not perform well on multi-site analysis. We see that the multi-view
techniques in SRM, MDDL, MDMS, and SSTL enable them to generate TL models that are more
accurate than the single view methods. Finally, SSTL provides most accurate TL models that lead to
better performance, by (1) using a multi-view approach to generate the site-specific common features,
then (2) using these common features (rather than the noisy raw neural responses) for transferring
data to the global shared space. Note each of the 7 plots is comparing SSTL and χ1, for 6 different
χ1 ∈ {MNI, MIDA, SIDeR, SRM, MDDL, MDMS}, for a total of 7 × 6 = 42 comparisons. A
2-sided t-test found p <0.05 in all 42 cases.

4.2 Multi-site classification analysis for sets of datasets that do not overlap

In this section, we report more general multi-site fMRI analysis — where datasets have no subject
that appears in each pair of sites. Therefore, we cannot use SRM, MDDL, and MDMS approaches to
analyze these datasets [3]. Figure 2 shows the effect of different transfer learning approaches (i.e.,
MIDA, SIDeR, and SSTL) on the performance of the multi-site fMRI analysis, with 2[a–d] showing
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Figure 2: Multi-site classification analysis for datasets that have no overlap (i.e., do not share any
subjects). Error bars illustrate ±1 standard deviation.

the peer to peer analysis, and 2[e–k] illustrating the multi-site analysis. As shown in the previous
studies [2, 3, 6, 9–16], these methods can improve the multi-site fMRI analysis results in comparison
with pure classification models (in MNI space) without transfer learning. We see that our SSTL
performs better than the single view approaches. These empirical results show that using site-specific
common features for transferring multi-site fMRI datasets can boost the performance of the MPV
analysis. Note each of the 11 plots is comparing SSTL and χ2, for 3 different χ2 ∈ {MNI, MIDA,
SIDeR}, for a total of 11× 3 = 33 comparisons. A 2-sided t-test found p <0.05 in all 33 cases.

4.3 Runtime

This section analyzes the runtime of the various approaches on pairs of datasets (i.e., pairs of
A, B, C, G, and H) that overlap — i.e., include some subjects in common. Here, all results are
generated by using a PC with certain specifications7. Figure 3 shows the runtimes of the transfer
learning techniques, scaled based on SSTL. We see that multi-view approaches (i.e., MSMD, MDDL,
SSA) had longer runtimes, probably because they must estimate the transformation matrices by
using the iterative optimization techniques. The runtime of single-view approaches was better than
the multi-view methods, perhaps because they process all instances in the (multi-site) training set
together rather than analyzing neural responses belonging to each subject separately. This runtime
is acceptable, given SSLT’s superior classification performance (see Sections 4.1 and 4.2). Indeed,
the main algorithmic difference between SSTL and the other techniques lies in the optimization
procedure: While SSTL uses an efficient optimization procedure that calculates common space
by applying a single-iteration method for each subject, the other transfer learning techniques used
iterative optimization algorithms.

The Supplementary Material also reports the visualization of the transferred neural responses.
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Figure 3: Runtime Analysis

5 Conclusion

In this paper, we propose the Shared Space Transfer Learning (SSTL) as a novel transfer learning (TL)
technique that can be used for homogeneous multi-site fMRI analysis. SSTL first extracts a set of
common features for all subjects in each site. It then uses TL to map these site-specific features to a
global shared space, which improves the performance of the classification task. SSTL uses a scalable
optimization procedure that can extract the common features for each site in a single pass through the
subjects. It then maps these site-specific common features to the site-independent shared space. To
the best of our knowledge, SSTL is the only multi-view transfer learning approach that can be used
for analyzing multi-site fMRI datasets — which have no subjects that appear in each pair of sites. We
evaluate the effectiveness of the proposed method for transferring between various cognitive tasks
— such as decision making, flavor assessment, etc. Our comprehensive experiments confirmed that
SSTL achieves superior performance to other state-of-the-art TL analysis methods. We anticipate
that SSTL’s multi-view technique for transfer learning will have strong practical applications in
neuroscience — such as functional alignment of multi-site fMRI data, perhaps of movie stimuli.
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Broader Impact

In this paper, we develop the Shared Space Transfer Learning (SSTL) as a novel transfer learning
(TL) approach that can functionally align homogeneous multi-site fMRI datasets and so improve the
prediction performance in every site. Although the proposed method is used to analyzed multi-site
fMRI datasets, it can also be seen as a general-purpose machine learning method for any multi-view
domain adaption applications. The proposed method is evaluated by using publicly-available fMRI
datasets —- provided by Open NEURO. SSTL is an open-source technique and can also be used via
our GUI-based toolbox called easy fMRI. We do not anticipate any negative consequences for this
study. We believe that SSTL’s multi-view technique for transfer learning will have strong practical
applications — including, but not limited, neuroscience, computational psychiatry, human-brain
interface, etc. In the future, we plan to utilize the proposed framework to analyze high-level cognitive
processes such as movie stimuli.

References

[1] Haxby, J.V. & Connolly, A.C. & Guntupalli, J.S. (2014) Decoding neural representational spaces using
multivariate pattern analysis. Annual Review of Neuroscience, 37:435–456.

9



[2] Zhou, S. & Li, W. & Cox, C.R. & Lu, H. (2020) Side Information Dependence as a Regularizer for Analyzing
Human Brain Conditions across Cognitive Experiments. In: 34th Association for the Advancement of Artificial
Intelligence (AAAI). Feb/7–12, New York.

[3] Zhang, H. & Chen, P.H. & Ramadge, P.J. (2018) Transfer learning on fMRI datasets. In: 21st International
Conference on Artificial Intelligence and Statistics (AISTATS). PMLR 84:595–603, Apr/9–11, Lanzarote, Canary
Islands.

[4] Yousefnezhad, M. & Selvitella, A. & Han, L. & Zhang, D. (2020) Supervised Hyperalignment for
multi-subject fMRI data alignment. IEEE Transactions on Cognitive and Developmental Systems. DOI:
10.1109/TCDS.2020.2965981.

[5] Chen, P.H. & Chen, J. & Yeshurun, Y. & Hasson, U. & Haxby, J.V. & Ramadge, P.J. (2015) A reduced-
dimension fMRI shared response model. 28th Advances in Neural Information Processing Systems (NIPS). pp.
460–468, Dec/7–12, Canada.

[6] Vega, R. & Greiner, R. (2018) Finding Effective Ways to (Machine) Learn fMRI-Based Classifiers from
Multi-site Data. Understanding and Interpreting Machine Learning in Medical Image Computing Applications.
pp. 32–39, Sep/16–20, Spain.

[7] Gorgolewski, K. & Esteban, O. & Schaefer, G. & Wandell, B. & Poldrack, R. (2017) OpenNeuro - a free
online platform for sharing and analysis of neuroimaging data. In OHBM, 1677.

[8] Wang, M. & Zhang, D. & Huang, J. & Yap, P.T. & Shen, D. & Liu, M. (2019) Identifying Autism Spectrum
Disorder with Multi-Site fMRI via Low-Rank Domain Adaptation. IEEE Transactions on Medical Imaging.
Aug/05, 39(3):644–655.

[9] Gao, Y. & Zhou, B. & Zhou, Y. & Shi, L. & Tao Y. & Zhang, J. (2018) Transfer Learning-Based Be-
havioural Task Decoding from Brain Activity. In: The 2nd International Conference on Healthcare Science and
Engineering (ICHSE). pp. 77–81, Jun/01–03, China.

[10] Thomas, A.W. & Müller, K.R. & Samek, W. (2019) Deep transfer learning for whole-brain FMRI analyses.
OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging. pp. 59–67,
Springer.

[11] Pan, S.J. & Tsang, I.W. & Kwok, J.T. & Yang, Q. (2011) Domain adaptation via transfer component analysis.
IEEE Transactions on Neural Networks. 22(2):199–210.

[12] Long, M. & Wang, J. & Ding, G. & Pan, S.J. & Philip, S.Y. (2013) Adaptation regularization: A general
framework for transfer learning. IEEE Transactions on Knowledge and Data Engineering. 26(5):1076–1089.

[13] Long, M. & Wang, J. & Ding, G. & Sun, J. & Yu, P.S. (2013) Transfer feature learning with joint distribution
adaptation. In: International Conference on Computer Vision., pp. 2200–2207, Dec/1–8, Sydney.

[14] Wang, J. & Feng, W. & Chen, Y. & Yu, H. & Huang, M. & Yu, P.S. (2018) Visual domain adaptation with
manifold embedded distribution alignment. In 26th ACM international conference on Multimedia, pp. 402–410,
Seoul.

[15] Zhang, C. & Qiao, K. & Wang, L. & Tong, L. & Hu, G. & Zhang, R.Y. & Yan, B. (2019). A visual encoding
model based on deep neural networks and transfer learning for brain activity measured by functional magnetic
resonance imaging. Journal of Neuroscience Methods. Vol. 325, Sep/1, pp. 1–9.

[16] Li, H. & Parikh, N.A. & He, L. (2018) A novel transfer learning approach to enhance deep neural network
classification of brain functional connectomes. Frontiers in Neuroscience, 12:491.

[17] Yan, K. & Kou, L. & Zhang, D. (2018) Learning domain-invariant subspace using domain features and
independence maximization. IEEE Transactions on Cybernetics. 48(1):288–299.

[18] Gretton, A. & Bousquet, O. & Smola, A. & Schölkopf, B. (2005) Measuring statistical dependence with
Hilbert-Schmidt norms. International conference on Algorithmic Learning Theory. pp. 63–77, Springer.

[19] Mensch, A. & Mairal, J. & Bzdok, D. & Thirion, B. & Varoquaux, G. (2017) Learning neural representations
of human cognition across many fMRI studies. Advances in Neural Information Processing Systems (NIPS). pp.
5883–5893, Dec/4-9, Long Beach, USA.

[20] Westfall, J. & Nichols, T.E. & Yarkoni, T. (2016) Fixing the stimulus-as-fixed-effect fallacy in task fMRI.
Wellcome Open Research. 1(23):1–24, The Wellcome Trust.

[21] Rastogi, P. & Van D.B. & Arora, R. (2015) Multiview LSA: Representation Learning via Generalized
CCA. 14th Annual Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (HLT-NAACL). pp. 556–566, May/31 to Jun/5, Denver, USA.

[22] Yousefnezhad, M. & Zhang, D. (2017) Deep Hyperalignment. 30th Advances in Neural Information
Processing Systems (NIPS). Dec/4-9, Long Beach, USA.

10



[23] Arora, R. & Livescu, K. (2012) Kernel CCA for multi-view learning of acoustic features using articulatory
measurements. Machine Learning in Speech and Language Processing (MLSLP). pp. 34–37, Sep/14, Portland,
USA.

[24] Sapatnekar, S.S. (2011) Overcoming Variations in Nanometer-Scale Technologies. IEEE Journal on
Emerging and Selected Topics in Circuits and Systems. 1(1):5–18.

[25] Xue, G. & Aron, A.R. & Poldrack, R.A. (2008) Common neural substrates for inhibition of spoken and
manual responses. Cerebral Cortex. 18(8):1923–1932.

[26] Aron, A.R. & Behrens, T.E. & Smith, S. & Frank, M.J. & Poldrack, R.A. (2007) Triangulating a cognitive
control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. Journal of
Neuroscience. 27(14):3743–3752.

[27] Kelly, A.C. & Uddin, L. Q. & Biswal, B.B. & Castellanos, F.X. & Milham, M.P. (2008) Competition
between functional brain networks mediates behavioral variability. NeuroImage 39(1):527–537.

[28] Veldhuizen, M.G. & Babbs, R.K. & Patel, B. & Fobbs, W. & Kroemer, N.B. & Garcia,E. & Yeomans,
M.R. & Small, D.M. (2017) Integration of sweet taste andmetabolism determines carbohydrate reward. Current
Biology. 27, 2476–2485.

[29] Smola, A.J. & Schölkopf, B. (2004) A tutorial on support vector regression. Statistics and Computing.
14(3):199–222.

11


	Introduction
	Related Works
	The Proposed Method
	Extracting site-specific common features
	Transferring site-specific common features to a global shared space

	Experiments
	Multi-site classification analysis for pairs of datasets that overlap 
	Multi-site classification analysis for sets of datasets that do not overlap
	Runtime

	Conclusion

