Shared Space Transfer Learning for analyzing multi-site fMRI data Muhammad Yousefnezhad^{1,2,3}, Alessandro Selvitella^{1,4}, Daoqiang Zhang², Andrew J. Greenshaw¹, Russell Greiner^{1,3} ¹University of Alberta, ²Nanjing University of Aeronautics and Astronautics, ³Alberta Machine Intelligence Institute (Amii), ⁴Purdue University Fort Wayne

Motivation

• a prevalent tool in neuroscience to analyze how human brains work.

- \succ Challenging issues in most fMRI studies:
 - **High-dimensionality** and noisy
 - Expensive to collect with small sample sizes
 - Batch effects: a set of external elements that may affect the performance of analysis

Shared Space Transfer Learning (SSTL)

- > SSTL learns a **TL model** by using a hierarchical **two-step** procedure: • STEP 1: Extracting a set of **site-specific common features** for each site. • STEP 2: Transferring the common features to a site-independent, global, shared space.
- > SSTL uses a single-iteration optimization approach

STEP 1: Generating the common space for *each site:*

 arg

$$\mathcal{J}_C^{(d)}\left([\mathbf{X}^{(d,s)}]_{s=1\ldots S_d}
ight) =$$

$$\mathbf{R}^{(d,s)}, \mathbf{G}^{(d,S_d)}$$
subject to $\left(\mathbf{G}^{(d,S_d)}\right)^\top$

$$\widetilde{\mathcal{J}}_{G} \Big(\mathbf{G} \Big) \hspace{0.1 cm} = \hspace{0.1 cm} rgmin_{\mathbf{W}} \Big\| \mathbf{G} - \mathbf{G} \mathbf{W} \mathbf{W}^{ op} \Big\|_{F}^{2},$$

Datasets

ID	Title (Open NEURO ID)	Туре	S_d	#1	T_d	#2	#3
А	Stop signal with spoken pseudo word naming (DS007)	Decision	20	4	149	B, C	B, C, D
В	Stop signal with spoken letter naming (DS007)	Decision	20	4	112	A, C	A, C, D
С	Stop signal with manual response (DS007)	Decision	20	4	211	A, B	A, B, D
D	Conditional stop signal (DS008)	Decision	13	4	317		A, B, C
E	Simon task (DS101)	Simon	21	2	302		F
F	Flanker task (DS102)	Flanker	26	2	292		E
G	Integration of sweet taste – study 1 (DS229)	Flavour	15	6	580	Η	Н
Η	Integration of sweet taste – study 3 (DS231)	Flavour	9	6	650	G	G

Multi-site classification analysis for pairs of datasets that overlap

 \succ We compare SSTL with 6 *different* existing methods: • Raw neural responses in MNI space without using TL methods

- Shared response model (SRM)
- Maximum independence domain adaptation (**MIDA**)
- Side Information Dependence Regularization (SIDeR)
- Multi-dataset dictionary learning (**MDDL**) • Multi-dataset multi-subject (**MDMS**)

SSTL: Objective Functions

$$\min_{\mathbf{G}^{(d,S_d)}} \sum_{s=1}^{S_d} \left\| \mathbf{G}^{(d,S_d)} - \mathbf{X}^{(d,s)} \mathbf{R}^{(d,s)}
ight\|_F^2$$

for *s-th* subject in *d-th* site for *s-th* subject in *d-th* site or *d-th* site

STEP 2: Generating the global shared space

 $\mathbf{W}^{\top}\mathbf{W} = \mathbf{I}_k.$

G denotes the concatenated version of all common spaces in the training set

with this dataset; #5 lists the other datasets whose neural responses can be transferred to this dataset

Multi-site classification analysis for sets of datasets that do not overlap

 \succ Multi-site classification analysis for datasets that have no overlap (i.e., do not share any subjects). Error bars illustrate ±1 standard deviation.

Visualizing transferred neural responses

In this paper, we propose the Shared Space Transfer Learning (SSTL) as a novel transfer learning (TL) technique that can be used for homogeneous multi-site fMRI analysis. Our comprehensive experiments confirmed that SSTL achieves superior performance to other state-of-the-art TL analysis methods. We anticipate that SSTL's multi-view technique for transfer learning will have strong practical applications in neuroscience — such as functional alignment of multi-site fMRI data, perhaps of movie stimuli.

Conclusion