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SSTL: Objective Functions

> Functional alignment in a single-site fMRI dataset
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> Task-based functional magnetic resonance imaging (fMRI):

o a prevalent tool in neuroscience to analyze how human brains work.
> Challenging issues in most fMRI studies:

o High-dimensionality and noisy

o Expensive to collect with small sample sizes

o Batch effects: a set of external elements that may affect the performance of analysis

> STEP 1: Generating the common space for each site:

arg min
R(d,s))G(d-Sd} s=—1

)\ | ,
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o X9s) denotes the neural responses for s-th subject in d-th site
o R9%) denotes the mapping matrices for s-th subject in d-th site
o G939 denotes the common space for d-th site

> STEP 2: Generating the global shared space
J ¢ (G)

arg minHG ~- GWW' Hz ,
W
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o (G denotes the concatenated version of all common spaces in the training set
o W is the global shared space

Shared Space Transfer Learning (SSTL)

The Global

Datasets

ID Title (Open NEURO ID) Type Sq #1 1y #2 #3
A Stop signal with spoken pseudo word naming (DS007) Deciston 20 4 149 B,C B,CD
B  Stop signal with spoken letter naming (DS007) Decision 20 4 112 A,C A,C,D
C  Stop signal with manual response (DS007) Decision 20 4 211 A,B A,B.,D
D  Conditional stop signal (DS008) Decision 13 4 317 A,B,C
E  Simon task (DS101) Simon 21 2 302 F
F  Flanker task (DS102) Flanker 26 2 292 E
G Integration of sweet taste — study 1 (DS229) Flavour 15 6 580 H H
H Integration of sweet taste — study 3 (DS231) Flavour 9 6 650 G G

S q 1s the number of subject; #1 is the number of stimulus categories; T'; is the number of time points per subjects; #2 lists the other datasets

that overlap with this dataset; #3 lists the other datasets whose neural responses can be transferred to this dataset.
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> The proposed Shared Space Transfer Learning (SSTL):
o A novel Transfer Learning (TL) approach for multi-site fMRI analysis
o It can functionally align homogeneous multi-site fMRI datasets
o It IS NOT LIMITED to overlapped datasets (i.e., share some subjects)
o It can improve the prediction performance in every site.

> SSTL learns a TL model by using a hierarchical two-step procedure:
o STEP 1: Extracting a set of site-specific common features for each site.
o STEP 2: Transferring the common features to a site-independent, global, shared space.

> SSTL uses a single-iteration optimization approach

Multi-site classification analysis for pairs of

datasets that overlap
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> Multi-site classification analysis for datasets that overlap (i.e., share some subjects). Error

bars illustrate +1 standard deviation.

> We compare SSTL with 6 different existing methods:

o Raw neural responses in MNI space without using TL methods
Shared response model (SRM)

Maximum independence domain adaptation (MIDA)

Side Information Dependence Regularization (SIDeR)
Multi-dataset dictionary learning (MDDL)

Multi-dataset multi-subject (MDMS)
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Multi-site classification analysis for sets of
datasets that do not overlap
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> Multi-site classification analysis for datasets that have no overlap (i.e., do not share any
subjects). Error bars illustrate £1 standard deviation.

Visualizing transferred neural responses
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Conclusion

In this paper, we propose the Shared Space Transfer Learning (SSTL) as a novel transfer
learning (TL) technique that can be used for homogeneous multi-site fMRI analysis. Our
comprehensive experiments confirmed that SSTL achieves superior performance to other
state-of-the-art TL analysis methods. We anticipate that SSTL's multi-view technique for
transfer learning will have strong practical applications in neuroscience — such as functional
alignment of multi-site fMRI data, perhaps of movie stimuli.




