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Abstract

Task-based functional magnetic resonance imaging (fMRI) provides invaluable
insights into human cognition but faces critical hurdles—Ilow signal-to-noise ratio,
high dimensionality, limited sample sizes, and costly data acquisition—that are
amplified when integrating datasets across subjects or sites. This paper introduces
orthogonal contrastive learning (OCL), a unified multi-representation framework
for multi-subject fMRI analysis that aligns neural responses without requiring tem-
poral preprocessing or uniform time-series lengths across subjects or sites. OCL
employs two identical encoders: an online network trained with a contrastive loss
that pulls together same-stimulus responses and pushes apart different-stimulus
responses, and a target network whose weights track the online network via expo-
nential moving average to stabilize learning. Each OCL network layer combines
QR decomposition for orthogonal feature extraction, locality-sensitive hashing
(LSH) to produce compact subject-specific signatures, positional encoding to em-
bed temporal structure alongside spatial features, and a transformer encoder to
generate discriminative, stimulus-aligned embeddings. We further enhance OCL
with an unsupervised pretraining stage on fMRI-like synthetic data and demonstrate
a transfer-learning workflow for multi-site studies. Across extensive experiments
on multi-subject and multi-site fMRI benchmarks, OCL consistently outperforms
state-of-the-art alignment and analysis methods in both representation quality and
downstream classification accuracy.

1 Introduction

Task-based functional magnetic resonance imaging (fMRI) is a widely used technique in neuroscience
for studying brain activity during cognitive processes such as decision-making, perception, and atten-
tion [} 2 3} 4]]. By capturing blood-oxygen-level-dependent (BOLD) signals while subjects engage
in structured tasks, fMRI enables researchers to link brain regions to specific mental functions [3]].
Despite its potential, fMRI data present several challenges: they are high-dimensional, inherently
noisy, expensive to acquire, and often limited in sample size—factors that hinder the training and
generalization of machine learning models [[1, 2} 3} 4,16, [7]]. To mitigate these limitations, modern
research increasingly relies on multi-subject fMRI datasets to improve model robustness and validity.
Moreover, the growing availability of large-scale, open-access repositories such as the national
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institute of mental health (NIMH) [} the Human Connectome Project[}} and OpenNEURO [ has made
it feasible to aggregate homogeneous task-based fMRI data across multiple sites, thereby increasing
sample diversity and statistical power [1,[7]]. However, this introduces additional complexity, includ-
ing inter-subject variability, cross-site differences in scanner hardware and acquisition protocols, and
population-level heterogeneity [} [78]. Consequently, there is a pressing need for machine learning
frameworks that can generalize across sites and subjects while being resilient to such batch effects,
making the development of domain-adaptive, multi-representation learning techniques essential for
real-world fMRI analysis.

Multi-subject fMRI analysis is complicated by substantial inter-individual variability in brain con-
nectivity, as each person’s connectome exhibits unique structural and functional patterns that lead
to idiosyncratic neural responses across subjects [2 9]]. To address this, functional alignment tech-
niques—most notably hyperalignment [S] and shared response model (SRM) [6, [10]—project each
subject’s neural responses into a shared representational space using an orthogonal mapping proce-
dure, effectively realigning neural signatures and improving inter-subject correspondence. These
alignment strategies can be framed as multi-view learning problems—each subject constitutes a
‘view’, and methods like generalized canonical correlation analysis (CCA) identify transformations
that maximize shared information across views [2, 16} 9, 10, {11} [12} [13]]. Recent work has extended
functional alignment to multi-site fMRI studies, aiming to pool data from different scanners and
populations; however, these efforts must contend with batch effects arising from scanner hardware
differences, acquisition protocols, and site-specific demographics [1,[7,[8]. Such batch effects intro-
duce unwanted variability that can confound downstream analyses unless corrected by harmonization
methods such as domain-adaptation frameworks tailored to neuroimaging [, [7]]. Constructive learn-
ing 14} [150 [16} [17, [18} [19) 20] is a paradigm in which models learn by contrasting similar and
dissimilar example pairs to shape feature spaces. It complements multi-view functional alignment
by using contrastive objectives to directly align representations across subjects and sites and, by
enforcing agreement on same-stimulus responses while discouraging spurious correlations, helps
mitigate batch effects and enhances robustness and generalization in multi-site fMRI analyses.

The main contributions of this paper are fivefold: (1) we introduce orthogonal contrastive learning
(OCL), a unified multi-representation framework that aligns multi-subject fMRI data without temporal
preprocessing or uniform time-series length requirements across subjects or sites; (2) we design a
dual-encoder architecture—an online network trained with a contrastive loss that pulls same-stimulus
responses together and pushes different-stimulus responses apart, and a target network updated via
exponential moving average to stabilize learning and enforce consistency; (3) we develop a novel OCL
layer composed of four tightly integrated components: QR decomposition, which yields orthonormal
feature bases to decorrelate signals and enhance the signal-to-noise ratio; locality-sensitive hashing
(LSH) [21]], which produces compact subject-specific signatures that preserve similarity relationships
while drastically reducing feature dimensionality; positional encoding, which injects continuous
temporal context into spatial feature representations to maintain dynamic stimulus information; and a
transformer encoder, which employs multi-head self-attention to capture global dependencies and
produce discriminative, stimulus-aligned embeddings; (4) we propose an unsupervised pretraining
strategy on synthetic fMRI-like data to initialize OCL parameters for faster convergence and improved
robustness; and (5) we demonstrate a transfer-learning pipeline that applies trained OCL models to
multi-site datasets, showing resilience to scanner variability and sequence-length differences, and
achieving superior downstream classification performance over state-of-the-art methods.

The remainder of this paper is structured as follows. Section [2]reviews related work, Section [3|details
our proposed method, Section ] presents our empirical evaluation, and Section 5] concludes with key
findings and avenues for future research.

2 Related Works

Hyperalignment (HA) is a deterministic alignment technique that uses generalized CCA to en-
hance prediction accuracy in fMRI analysis [} [11}, [12]. Classic HA’s requirement to invert high-
dimensional covariance matrices makes it unreliable for highly correlated data—e.g., whole-brain
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images; variants such as regularized hyperalignment (RHA) [[L1], singular value decomposition
hyperalignment (SVDHA) [22], and (non-parametric) kernel hyperalignment (KHA) [12] respec-
tively introduce regularization, low-rank decompositions, or kernel mappings to stabilize alignment.
Deep hyperalignment (DHA) further extends this line by employing a deep neural network as a
learnable kernel to capture complex, nonlinear subject-specific transformations end-to-end [9]. More
recently, deep geodesic canonical correlation analysis (DeepGeoCCA) has been proposed to gener-
alize CCA to symmetric positive-definite covariance matrices on Riemannian manifolds, yielding
robust covariance-based alignment by maximizing geodesic correlation [[13].

SRM offers a probabilistic alternative to HA by aligning neural responses via maximum-likelihood
estimation of a shared latent timecourse [10]]. Subsequent work introduced a multi-view convolutional
autoencoder (CAE + SRM), which leverages convolutional neural networks to extract richer features
before alignment [23]]. Matrix-Normal SRM (MN-SRM) employs Kronecker-separable covariance
priors and maximum a posteriori estimation to jointly model spatial and temporal noise [24], while
robust SRM (RSRM) applies sparse, deterministic optimization to disentangle shared and subject-
specific components [25]]. FastSRM presents an identifiable SRM variant with a dimension-reduction
preprocessing step that stabilizes and accelerates shared response recovery, achieving orders-of-
magnitude speed-ups without loss of accuracy [6].

Shared independent component analysis (ShICA) replaces the CCA step with independent component
analysis (ICA) to learn statistically independent shared components under additive Gaussian noise,
improving alignment on data with non-Gaussian artifacts [26]. However, ShICA only models shared
variance. To address this, shared and individual ICA (ShIndICA) was proposed to jointly recover both
shared and subject-specific sources, with provable identifiability via likelihood-based estimation [3]].
Beyond ICA, the hyper hidden Markov model (Hyper-HMM) projects voxels into a latent event space
and aligns temporal segments across subjects, enabling joint spatial-temporal correspondence in
naturalistic fMRI paradigms [4].

Several multi-site transfer-learning approaches have been developed to harmonize task-based fMRI
data across scanners and cohorts, including maximum independence domain adaptation (MIDA) [27],
multi-dataset dictionary learning (MDDL) [28]], and multi-dataset multi-subject (MDMS) [28]], side
information dependence regularization (SIDeR) [7]]. The shared space transfer learning (SSTL) [[1]
further extends this line by extracting site-specific common features through a single-iteration multi-
view optimization and mapping them into a site-independent shared space, thereby enabling scalable
alignment of high-dimensional fMRI data. SSTL can incorporate the deep-kernel formulation
introduced in DHA [9]—termed DeepSSTL—to further boost prediction accuracy in multi-site
fMRI studies [1]]. Explainability-generalizable graph neural networks (XG-GNN) is a meta-learning
framework with domain-generalizable explainability regularizers that learns graph neural networks for
multi-site fMRI analysis, demonstrating robust cross-center performance and interpretable subgraph
discovery [8].

Self-supervised ‘constructive’ learning methods have recently been applied to multi-view fMRI
alignment. Foundational contrastive frameworks such as SimCLR [[14]], bootstrap-your-own-latent
(BYOL) [15]], DINO [16]], and its successor DINOv2 [[17] learn view-invariant representations with-
out labels. In task-based fMRI, MindEye combines contrastive encoding with diffusion priors to
reconstruct viewed images while implicitly aligning subjects in the latent space [18]]; MindEye2
demonstrates that a shared-subject generative model pretrained across participants can be fine-tuned
with just one hour of data to decode images from fMRI [19]. More recently, MindAligner learns ex-
plicit cross-subject transformation networks for functional alignment in task-based fMRI [20]. These
self-supervised approaches offer promising alternatives for multi-subject alignment by leveraging
rich augmentations and momentum-based architectures. In the following, we empirically compare
our proposed method to some of these approaches.

3 The Proposed Orthogonal Contrastive Learning (OCL)

This section introduces orthogonal contrastive learning (OCL), a novel multi-view framework for
multi-subject fMRI analysis. Similar to previous functional alignment methods, OCL considers each
subject’s neural responses as a separate view of the same underlying data. As Figure I]illustrated,
OCL employs two neural networks with identical architectures: an online network, which actively
learns representations through a contrastive objective, and a target network, whose parameters are
gradually updated as a moving average of the online network’s parameters. This dual-network
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Figure 1: The Proposed Orthogonal Contrastive Learning (OCL)

setup stabilizes training and ensures consistent representations across subjects. Each OCL layer
has four primary components: first, QR decomposition, which yields orthonormal feature bases to
decorrelate signals and enhance the signal-to-noise ratio; second, locality-sensitive hashing (LSH),
which produces compact subject-specific signatures; third, positional encoding, which integrates fMRI
temporal information into spatial feature representations; finally, a transformer encoder integrates
these inputs, ensuring that neural representations from the same stimulus become closely aligned,
while representations of different stimuli remain distinct. In the remainder of this section, we
mathematically define OCL, present a pretraining strategy to improve its performance, and discuss
extending OCL through transfer learning for multi-site fMRI analysis.

We let S be the number of subjects in the training set. Let T, s = 1,...,.5 denote the number
of time points for the s-th subject, and let V' be the number of voxels in the selected region of
interest (ROI), which we view as a 1D vector, even though it corresponds to a 3D volume. The
preprocessed neural responses for the s-th subject is then defined as X, € RT**V, For simplicity,
this paper assumes that each column of the neural responses is standardized during preprocessing:
Xs ~ N(0,I), s =1,...,5, Iis the identity matrix. In addition, the v-th column in X for all
subjects denotes the anatomically aligned voxel located at the same locus across fMRI images [[1]].
We then let V defines the number of layers in the online and target networks, f,,n = 1,..., N is the
transformations implemented by each layer,and H,, ; = f,(H,,—15),n=1,...,N,s=1,...,S
is all transformations applied in the n-th layer of the proposed OCL architecture on the nerual
responses of s-th subject. Here, we consider Hy s = X as input layer of the networks for each
subject. Further, we let r; = rank(X;) denote the rank of the neural response matrix of the s-th
subject, and d < mins=1, . s(rs) be the number of components in the final representation such that
H,, e ReXdn=1...,N,s=1,...,5,Z, € RT:X4 = Hy , as the final representation of
neural representations for each subject that can be used for downstream classification analysis.

The first component in each OCL transformation layer is a QR decomposition. Given the neural
response matrix of the s-th subject X, we apply thin (reduced) QR decomposition [29] to factor
X, = QUIRM where QM € RTs*"s is orthonormal and R € R™*V is upper-triangular.
We then truncate these factors by taking the first d columns of Q™! to form Qtruncate ¢ RT-x4d
and the first d rows of R{"! to form R, € R¥*Y. This truncation component ensures that each
OCL layer produces exactly d features, where d is usually the maximum number of shared features
that can be extracted across all training subjects, as determined by their ranks [30]. We let T >
max,—1, .. g 1T, be the maximum content-window size in the OCL architecture. The temporal zero-
padding component adds zero rows to each QYU g¢ that all orthonormal matrices share the
common shape Q, € R”*¢. Note that 7" must be large enough to accommodate the neural responses
of every subject, including those in the testing set. We also define a binary mask vector m € {0, 1}7,
where a value of 1 indicates an actual response time point and 0 indicates padding. We also let d be



the number of nonzero elements of the upper-triangular matrix R and define ¢, € R = vec(Ry)
as the vectorization operator that extracts the nonzero elements of the upper-triangular matrix into a
single vector, which is then used in the next step to produce subject-specific signatures.

Locality-sensitive hashing (LSH) component is a randomized, data-independent hashing scheme
for approximate nearest neighbor search in high-dimensional spaces, ensuring that similar items
collide with higher probability than dissimilar ones [21]]. We let the parameter p € (0, 2] be
the stability exponent [21, 31]], a € R< is drawn from a p-stable (Gaussian) distribution, w €
R+ be the quantization granularity of the hash bins, and b ~ U[0, w], yielding provable locality
sensitivity [21} 32]]. We denote the LSH for s-th subject as follows:

f = Bhiapu)(6) = {WJ

where | | is the floor function. Note that LSH is identical for all neural responses of the s-th subject
and needs only be computed once for all time points belonging to that subject in each training
iteration. We then use a linear multilayer perceptron (MLP) that accepts the scalar ¢, € R as input
and produces the vector s, € R? as the subject-specific signature (embedding) for the s-th subject.

Lemma 1. Let each neural responses matrix admit a reduced QR factorization X; = Qs R with

Q. Q. =L Define ¢, = vec(R;) = vec(Q, X,). If

|1 — & < ||@1 — ps]| = Pr[r = €] > Pr[ty = ¢3].
Please refer to the supplementary material for the proof.

ey

We let C, € RT*24 be the output of the concatenation component, which combines each row of
the orthonormal matrix Q, € R”*¢ with the subject-specific signature s, € R?. We then apply a
sinusoidal positional encoding to embed temporal context alongside the spatial and signature features.
Concretely, we construct a positional encoding matrix

t t
Tx2d __ o . —
EecR =le1,0---5e12d)s  €r2i = sm<T2i/(2d) ) €t,2i+1 = COS(TQi/(Qd) >,

fort =1,...,Tandi =0,...,d— 1. Adding this to the concatenated features yields the component
P, € RTX?d C;s + E Wthh now encodes both spatial patterns and their temporal positions.
Next, OCL applies a normalization component to stabilize and scale each time-step embedding, i.e.,
given the positional-encoded features P, € R7*24, we compute the normalization N, € RT*2d =
Norm (Ps). Finally, these normalized embeddings are passed, together with the temporal padding
mask my, into a standard Transformer encoder [33]] to produce corresponding layer output H,, ..

Weletys = [ys1,-- -, yS,TS]—r € R7s denote the class labels for the s-th subject in the training set.
For the s-th subject, let Zs = [z51, ... ,zsjs]T € R7T:*d pe the output of final layer of the OCL
online network. We define the contrastive loss LocL(Zs,ys) with temperature 7, margin p, and
between-class weight A for s-th subject as

Ts
S0 exp (e 203)/7)
j=1
£OCL{7—,M,)\}(Z8,yS :_721 J#, y” Ys,i
i=1 Zexp Zsir Zs )/ T) ?)
1 s T
ﬁ Z Z 1Og <1 +exp (<zs,i; Zs,j)/T - U))
- y*i;lllm

Let 6 denotes all learnable parameters of the online encoder and 6 those of the target encoder. In
each training iteration for subject s, we first update the online parameters by one step of gradient
descent on the subject’s contrastive loss: § < 0 — nVgLocL(Zs,ys), 7 is the learning rate. We
update the online network using all subjects in the training set during each iteration. Once the online
network has processed every subject’s data in each iteration, we update the target network parameters
using an exponential moving average (EMA) of the online parameters as follows [15]]:

é:%ejt(l—i)é, 3)



Table 1: The fMRI datasets

1D Title Type Syl Ts Site(#)

A* Stop signal (DS007) [34] Decision 20 4 472 B (3)

B Conditional stop signal (DS008) [35] Decision 13 4 317 A(1)
CMU Meanings of Nouns [36] Semantic 9 12 402

C Simon task (DS101) (unpublished [7]) Simon 21 2 302 D()

D Flanker task (DS102) [37]] Flanker 26 2 292 C(1)
DS232  Face-coding models with individual-face [38]] Visual 10 4 760

E Integration of sweet taste: Study 1 (DS229) [39] Flavour 15 6 580 F (1)

F Integration of sweet taste: Study 3 (DS231) [39] Flavour 9 6 650 E (1)
Forrest  Forrest Gump movie [40] Visual 20 10 451
Raiders  Raiders movie [5,[10] Visual 10 7 924

S is the number of subjects; |y| is the number of stimulus categories; T’ is the number of time points per subject; Site lists the other datasets
whose neural responses can be transferred to this dataset. # represents the number of sites in the corresponding dataset. * this dataset is

partitioned into three independent ‘sites’—pseudo-word naming (A1), letter naming (A2), and manual response (A3) [1]

where ) is the number of total iterations. In the training phase, OCL learns a shared representation
space in which neural recordings from all training subjects are aligned. We then train a classifier
(denoted by  in Figure[T)) on these new representations. In the testing phase, we use the trained target
network to map the test data into the same representation space and then apply the classifier to predict
cognitive states. We provide the pseudocode for the proposed OCL algorithm in the supplementary
material.

3.1 General Pretrained Orthogonal Contrastive Model

To bootstrap OCL for real task-based fMRI, we first pretrain the dual-encoder entirely on synthetic
data that mimics the statistical structure of neural timecourses. Concretely, given k class categories,
we generate a corpus of random base matrices M € R”*V where each group of % rows is drawn
i.i.d. from one of k distinct Gaussian distributions with randomly initialized means and variances that
differ across distributions. For each base matrix M, we then create S distinct ‘views’ by applying
S random orthonormal rotations: X, = MU,, U/U,=1, s=1,...,85. Since each row of
M is sampled from one of the k distributions, we assign a corresponding class label y = k to that
row, and this label is preserved across all rotated views {Xs}le. Each view X is passed through
the OCL layers to produce embeddings Z, i.e., the contrastive objective pulls together embeddings
of the same label across different rotations and pushes apart embeddings of different labels. After
pretraining, we transfer the farget encoder’s parameters 6 to initialize the downstream OCL model
on the real fMRI data. This EMA-smoothed encoder has already learned to factor out arbitrary
orthogonal transforms and subject-specific variability, providing a strong, generalizable starting point
for aligning real neural data with minimal additional tuning.

Lemma 2. Let each synthetic view be generated by an orthonormal rotation of the base data, X s =
MU,, U/U, =1 Write the corresponding OR factor R and its flattened vector ¢, = vec(Ry).
Then for any three views X1, Xo, X3 generated from M,

Pr [[1 = KQ] = Pr [(1 = 43} .

In other words, the collision probability of the LSH hash is identical across all random rotations
generated from M.

Please see the supplementary material for the proof.

3.2 Transfer Learning via Orthogonal Contrastive Embeddings

To extend OCL to multi-site fMRI studies, suppose we have B training sites, each providing data
{ng), ygb)}fil forsite b =1, ..., B. We train an independent OCL instance on each site, yielding

target-encoder parameters éb, b=1,..., B. These site-specific encoders capture local scanner and
population idiosyncrasies while maintaining the shared contrastive objective. To initialize OCL on a
multi-site setup (with no extra fine-tuning step), we aggregate the B learned targets via

_ 1 &L
esites = Ebz_:leln (4)
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Figure 2: Classification analysis on Temporally Aligned versus Temporally Unaligned Data. Plotted
are mean accuracies and error bars are £1 standard deviation.

thereby blending all site-specific knowledge into a single robust prior. We then freeze Ogites and apply
it to both the training-site and testing-site data, projecting each into the same shared feature space
defined by the aggregated targets—this alignment boosts the accuracy of our downstream classifiers.

Please note that this multi-site adaptation scheme also enables an active learning loop in the real

world applications. At each iteration, we evaluate the contrastive loss Lg’C)L on the predicted time
points from the testing site b and select those with highest uncertainty (e.g., largest margin-based loss)
for expert manual labeling. The newly annotated samples are then incorporated into the training set,
the online encoder parameters are updated accordingly, and the target encoder is refined via EMA.
By focusing annotation effort on the most informative temporal segments, this closed-loop procedure
maximizes performance gains in low-data or high-cost labeling scenarios. Although active learning
offers a promising avenue for extending OCL, it is beyond the scope of this study; all reported results
were obtained without active-learning or expert-annotated data.

4 Experiments

Table [T summarizes the 10 datasets used in our empirical evaluation. Datasets CMU and DS232
consist of simple cognitive task-prediction paradigms, whereas Forrest and Raiders datasets involve
naturalistic movie-watching stimuli in single-site fMRI studies. We also include 6 homogeneous
task-based fMRI datasets (A—F) suitable for multi-site analysis. All datasets are publicly available
(via OpenNEURO®, except CMUE[) and were preprocessed with our GUI-based toolbox called easy
fMRI|°|and FSL 6.0.15 |} including spatial normalization, smoothing, anatomical alignment; for
those alignment techniques that require it, temporal realignment was also applied (see Section ..
Each scan was registered to the MNI152 T1-weighted template [[1]] at a 4mm isotropic resolution,
and a whole-brain ROI was defined for all analyses, yielding V' = 19,742 voxels per volume. Data
were standardized during preprocessing, without loss of generality.

We benchmark OCL against 7 single-site fMRI analysis methods: FastSRM and HyperHMM as
baselines; ShIndICA as a non-CCA method; DHA and DeepGeoCCA as deep multi-view learning
approaches; and MindEye2 and MindAligner as self-supervised constructive learning approaches. For
multi-site evaluation, we compare OCL to 5 existing techniques: SSTL as a baseline; DeepSSTL and
XG-GNN as deep multi-site learning approaches; and MindEye2 and MindAligner as self-supervised
constructive methods. Crucially, each site’s data are strictly partitioned so that no neural responses
from a given site appear in both the training and testing sets. All experiments were run on two PCs
with the specifications listed in the Footnote|°| Our proposed OCL algorithm is available on GitHub ﬂ
Like the previous studies [1} (9, [10], we employ a v-support vector machine (v-SVM) [41] for all
classification experiments. We use a leave-one-subject-out nested cross-validation: in each outer fold,
one subject is held out for testing; within each, another subject serves as validation (inner fold), and
the rest form the training set. Hyperparameters for alignment and v-SVM (e.g., RBF kernel scale, 1)
are selected via grid search on validation accuracy, and the best testing accuracy is reported for each
technique.

5Available at https://www.cs.cmu.edu/afs/cs.cmu. edu/project/theo-81/www/

®Available at https: //easyfmri.learningbymachine.com/

"Available at https://fsl.fmrib.ox.ac.uk/fsl

8 OS: Fedora 42, Python: 3.11.9, PyTorch: 2.6, CUDA: 12.6; Connection: 2x40GbE CX314A Mellanox
(PC1) CPU: AMD EPYC 7551 P (64 cores), RAM: 256G GPU:2xNVIDIA 4060Ti 16G;
(PC2) CPU: AMD Threadripper 2990W X (64 cores), RAM: 128G, GPU:2xNVIDIA 4060Ti 16G.

?OCL code repository: https://github. com/myousefnezhad/ocl


https://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/
https://easyfmri.learningbymachine.com/
https://fsl.fmrib.ox.ac.uk/fsl
https://github.com/myousefnezhad/ocl

—e—  FastSRM —8— HyperHMM -@- DeepGeoCCA —— MindAligner —%— OCL
©— ShindICA X- DHA -4--  MindEye2 ¢ OCL,ero

©
b3
¢
%

90

3
o

9
3

Classification Accuracy (%)
Classification Accuracy (%)

65

200 400 600 800 10001200 200 400 600 800 10001200 200 400 600 800 10001200 200 400 600 800 10001200
# of voxels per hemisphere # of voxels per hemisphere # of voxels per hemisphere # of voxels per hemisphere

(a) Forrest (TRs = 100) (b) Forrest (TRs = 400) (c) Forrest (TRs = 800) (d) Forrest (TRs = 2000)
£ s s

S
* -

LA s i

Classification Accuracy (%)

Classification Accuracy (%)
Classification Accuracy (%)

E 0 50 s0
100 150 200 250 300 350 400 450 100 150 200 250 300 350 400 450 100 150 200 250 300 350 400 450 100 150 200 250 300 350 400 450
# of voxels per hemisphere # of voxels per hemisphere # of voxels per hemisphere # of voxels per hemisphere

(e) Raiders (TRs = 100) (f) Raiders (TRs = 400) (g) Raiders (TRs = 800) (h) Raiders (TRs = 2000)
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For OCL, we first initialize a model (‘OCL,¢;,’) by pretraining on two million (4 x 500,000)
synthetic matrices M € RT*V for k € {5, 10,20, 50} categories with T" = 2000 time points and
V' = 19742 voxels, each subjected to S = 360 random rotations. We set the embedding dimension
to d = 256, employ Encoding Transformer with 16 attention heads, and use N = 32 network
layers. These hyperparameters were chosen to balance representational capacity with available
computational resources listed in the Footnote B We then initialize each OCL instance with the
pretrained target encoder 6, and fine-tune both online and target networks on the real fMRI data.
We train (and pretrain) OCL for up to 1) = 1000 iterations with automatic early stopping based
on validation loss using Adam optimizer [42]]. At each iteration, we form a batch from all time
points of a single subject—treating each time point as an independent sample—and randomly shuffle
their order. This permutation prevents the network from overfitting to a fixed temporal sequence
and encourages robustness to varied response orderings. Because every fine-tuned OCL model is
initialized from OCL,,., we employ the same OCL network architecture across all experiments in
this paper. OCL consistently produces a feature space of dimension d = 256. For all competing
methods, we evaluate two latent space sizes—one fixed at d = 256 and a second chosen via grid
search—and report the configuration that yields the highest classification accuracy. Other self-
supervised approaches are similarly initialized with their published pretrained weights [19} 20].
All remaining hyperparameters for both the alignment and classification models are optimized
using grid search. We perform grid search over the key OCL hyperparameters — temperature
7 € {0.01,0.1,0.5,0.9,0.99}, margin 1 € {0.1,0.2,0.5,0.8,0.9}, between-class weight A €
{0.1,0.2,0.3,0.4,0.5}, learning rate n € {0.1,0.2,0.3,0.4}, and quantization granularity w €
{0.9,1.0,1.1,1.2} — and select the combination that maximizes performance on the validation set.

4.1 Simple Cognitive Task Classification: Temporally Aligned vs. Unaligned Data

This section evaluates OCL on two simple cognitive-task datasets (CMU and DS232), in which
subjects performed Semantic, and Visual assessments during fMRI scanning. Unlike most functional
alignment methods—which assume temporal synchronization (i.e., each time point ¢ corresponds
to the same stimulus across subjects)—OCL can handle varying time-series lengths and arbitrary
time-point ordering without explicit temporal preprocessing. We therefore compare OCL and
several alignment techniques both on the raw, unaligned data and after applying their required
temporal alignment. To robustly tune and assess performance, we employ a nested leave-one-
subject-out procedure: in each outer fold one subject is held out for testing, while in each inner
fold a different subject is held out for validation and hyperparameter selection. Figure 2] shows
that traditional alignment methods suffer significant testing accuracy degradation on unaligned
data because their shared-space templates misalign stimuli across rows; in contrast, self-supervised
constructive approaches (MindEye2, MindAligner, and OCL) learn flexible mappings rather than fixed
templates, yielding stable shared representations. OCL in particular achieves the highest accuracy,
likely due to (1) its orthogonal decomposition of independent versus subject-specific features and (2)
the pretrained ‘OCL,.,,” encoder’s ability to generalize arbitrary rotations to novel neural patterns.
Each of the 4 plots in Figureis comparing OCL with 7 different methods x = {FastSRM, ShIndICA,
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Figure 4: Multi-site Classification Analysis. Plotted are mean accuracies and error bars are +1

standard deviation.

HyperHMM, DHA, DeepGeoCCA, MindEye2, MindAligner} for a total of 4 x 7 = 28 comparisons
— where the 2-sided t-test found p < 0.05 in all 28 cases.

4.2 Classification Analysis on Movie Stimuli

This section evaluates functional alignment techniques on the two movie-watching fMRI datasets
(Forrest and Raiders) listed in Table[T] using the same nested leave-one-subject-out scheme as in
Section [4.1] Following the procedure of [3], we first rank voxels within the predefined ROI by
their task-evoked activation strength, as in [9} [10} [30]. We then assess each alignment method
across multiple spatial resolutions by selecting the top {100, 200, 400, 600, 800, 1000, 1200} voxels
for Forrest and {70, 140, 210, 280, 350, 420,490} voxels for Raiders. To test temporal coverage,
we further repeat all experiments using the first {100,400, 800, 2000} Time of Repetitions (TRs)
of each scan. Note that in OCL, voxels outside the ROI are zeroed out in the input layer, and
the subsequent QR decomposition automatically ignores these zeros, preventing them from in-
fluencing the learned representations. Figure [3] presents classification accuracy as a function of
voxel count and number of time points, comparing our proposed OCL to 7 alignment approaches
X = {FastSRM, ShIndICA, HyperHMM, DHA, DeepGeoCCA, MindEye2, MindAligner} for a to-
tal of 8 x 7 x 7 = 392 pairwise evaluations. Self-supervised methods initialized with pretrained
models typically outperform traditional functional-alignment techniques. In every evaluation, OCL
surpasses all comparators—an advantage we attribute to its orthogonal feature decomposition and
contrastive alignment. A two-sided t-test confirms that the accuracy differences are significant
(p < 0.05) in all 392 comparisons.

4.3 Multi-Site Classification Analysis

This section presents the results of multi-site fMRI analyses using datasets A-F listed in Table [T} For
each pair of sites (A, B), we conducted a two-sided cross-site evaluation: in the forward direction
A — B, we trained and validated alignment and classification models using site A and evaluated
them on site B; in the reverse direction B — A, we reversed the training and testing roles. The
final accuracy is computed as the mean of both directions. This bidirectional setup is denoted as
A = B. Figures [ (a—c) summarize the classification accuracies across multiple cross-site pairs.
In addition, Figure ] (d) presents the mean accuracy of supplementary experiments based on all
possible two-versus-two train/test splits derived from the set {Al, A2, A3, B}, yielding six distinct
comparison for example, training on {Al, A2} and testing on {A3, B}, and vice versa. As
shown, the baseline method SSTL, which relies on linear transformations, consistently underperforms.
In contrast, DeepSSTL improves accuracy by utilizing a MLP based deep kernel for alignment.
Constructive learning approaches further enhance accuracy by leveraging pretrained models that
better generalize across domains. The proposed OCL framework achieves the highest classification
performance across all site-pairs. This improvement appears to stem from two key design elements:
(1) the use of a pretrained multi-representational alignment module that provides a robust initial
feature space, and (2) a specialized architecture that enforces cross-site shared information via a
contrastive loss. Each of the 4 subplots in Figure 4 compares OCL against a competing method Y, for
each of five baselines x € {SSTL, DeepSSTL, XG-GNN, MindEye2, MindAligner}, resulting in a
total of 4 x 5 = 20 comparisons. In all cases, a two-sided paired ¢-test yielded statistically significant
differences (p < 0.05), confirming the robustness of OCL in cross-site generalization.

Opairs: {Al, A2}, {Al, A3}, (AL, B}, {A2, A3}, {A2, B}, {A3, B}



5 Conclusion

This paper has introduced orthogonal contrastive learning (OCL), a unified framework that addresses
task-based fMRI’s key challenges: low signal-to-noise ratio, high dimensionality, and variable time-
series lengths. OCL aligns neural responses across subjects and sites without explicit temporal
preprocessing. OCL employs a dual-encoder design: an online network and a target network
whose weights track the online network via exponential moving average to stabilize learning. Each
OCL network layer combines QR decomposition for orthogonal feature extraction, locality-sensitive
hashing (LSH) to produce compact subject-specific signatures, positional encoding to embed temporal
structure alongside spatial features, and a transformer encoder to generate discriminative, stimulus-
aligned embeddings, trained with a contrastive loss that pulls together same-stimulus responses and
pushes apart different-stimulus responses. We further enhance OCL with an unsupervised pretraining
stage on fMRI-like synthetic data and demonstrate a transfer-learning workflow for multi-site studies.
Across extensive experiments on multi-subject and multi-site fMRI benchmarks, OCL consistently
outperforms state-of-the-art alignment and analysis methods in both representation quality and
downstream classification accuracy.

In the future, OCL has the potential to be applied across a variety of task-based fMRI studies, such
as reconstructing visual stimuli or movies from human brain activity, as well as extended to other
neuroimaging modalities including resting-state fMRI, MEG, and EEG. For resting-state fMRI,
pseudo-labels can be generated by applying sliding-window functional connectivity or by clustering
temporal windows based on correlation patterns; OCL can then maximize contrastive agreement
across these pseudo-classes, effectively aligning subjects in the absence of explicit tasks. Similarly,
for MEG and EEG data, the decomposition can operate on sensor- or source-space time series, while
LSH can hash spectral or time—frequency representations. Positional encoding further preserves
temporal ordering, even when sampling rates vary across modalities. Moreover, OCL can be scaled
to larger voxel spaces and multi-site datasets, paving the way toward a foundation model for fMRI
analysis—although such scaling would require substantial GPU cluster resources.

6 Broader Impacts

Orthogonal contrastive learning (OCL) enables large-scale pooling of multi-site fMRI datasets,
substantially improving statistical power and reproducibility by harmonizing site-specific biases and
reducing variance in group-level inferences. By aligning subject-specific neural signatures into a
shared space, OCL facilitates the discovery of robust biomarkers for neurological and psychiatric
disorders, advancing precision psychiatry and personalized medicine. Eliminating the need for explicit
temporal preprocessing and uniform time-series lengths, OCL lowers technical barriers to integrating
diverse datasets, supporting open-science platforms and accelerating collaborative research. Finally,
by democratizing access to high-quality, reproducible fMRI representations and mitigating batch
effects, OCL promotes ethical, transparent Al-driven neuroscience, fostering cross-disciplinary
innovation and responsible research practices.

7 Limitations

OCL’s multi-module architecture enables strong alignment but comes with important caveats: (i)
Computation: its dual-network and Transformer components demand substantially greater computa-
tion power than traditional alignment methods, limiting scalability to very high-dimensional feature
spaces; (ii) Domain shift: performance may degrade under extreme inter-site or inter-subject domain
shifts beyond those in our benchmarks; (iii) Data requirements: its ability to generalize robustly
hinges on access to large, well-annotated multi-site datasets, constraining usefulness in small-sample
or weakly labeled settings; and (iv) Interpretability: deep learning in neuroimaging is not easily
interpretable, and while we provide initial insights via QR-basis spatial projections and attention
maps, comprehensive interpretability is outside the scope of this work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction accurately reflect the paper’s
contributions, including the proposed OCL framework and its application to multi-subject
and multi-site fMRI analyses.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss our primary assumptions in the Experiments section, and address
the limitations and future directions of the proposed method in the Conclusion and Broader
Impacts sections.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide the full set of assumptions in the Experiments section and include
all proofs in the supplementary material.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all necessary details to reproduce the main experimental results in
the Experiments section.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

15



5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper uses publicly available datasets for all empirical evaluations, and we
will release the proposed method as part of our open-source toolkit for direct use in fMRI
analysis.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All training and testing details are clearly specified in the Experiments section.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars appropriately, define them clearly, and provide relevant
information on statistical significance in the Experiments section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide detailed information about the computational resources used in the
Experiments section.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .

Justification: The research presented in this paper conforms to the NeurIPS Code of Ethics
in all respects.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Please refer to the Broader Impacts section.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

12.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: This paper does not utilize pretrained language models, image generators, or
datasets obtained through web scraping.

Guidelines:

The answer NA means that the paper poses no such risks.

Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper does not use existing assets

Guidelines:

The answer NA means that the paper does not use existing assets.
The authors should cite the original paper that produced the code package or dataset.

The authors should state which version of the asset is used and, if possible, include a
URL.

The name of the license (e.g., CC-BY 4.0) should be included for each asset.

For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor direct research with human
subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor direct research with human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We used large language models solely for writing assistance, editing, and
formatting purposes.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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