
Orthogonal Contrastive Learning 
for Multi-Representation fMRI Analysis

Motivation

Understanding brain activity during cognitive tasks is a key goal in

neuroscience. Task-based fMRI enables this but faces major challenges—

low signal-noise ratio, high-dimensionality, small sample sizes, and

variability across subjects and sites.

We introduce Orthogonal Contrastive Learning (OCL), a unified

framework that aligns multi-subject fMRI data without requiring temporal

alignment or equal sequence lengths. OCL integrates QR-based

orthogonalization, locality-sensitive hashing, positional encoding, and

transformer encoders to learn robust, stimulus-aligned embeddings.

Trained through contrastive learning and unsupervised pretraining on

fMRI-like synthetic data, OCL achieves state-of-the-art performance in both

alignment quality and downstream classification across multi-subject and

multi-site datasets.
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Conclusion

Orthogonal Contrastive Learning (OCL) offers a robust, scalable solution for

multi-subject and multi-site fMRI analysis. By combining orthogonal feature

extraction, contrastive learning, and transformer-based representations,

OCL eliminates the need for temporal alignment while improving cross-

subject consistency. Experiments show that OCL outperforms existing

alignment methods and enables effective transfer learning across diverse

datasets—advancing the integration of machine learning and neuroscience.

Simple Cognitive Task Classification:

Temporally Aligned vs. Unaligned Data

Classification Analysis on Movie Stimuli

Experiments

Classification Analysis on Movie Stimuli

❖ The fMRI datasets

❖ We benchmark OCL against 

• 7 single-site fMRI approaches: FastSRM and HyperHMM as baselines; ShIndICA as a non-CCA

method; DHA and DeepGeoCCA as deep multi-view learning approaches; MindEye2 and

MindAligner as constructive learning approaches.

• 5 multi-site techniques: SSTL as a baseline; DeepSSTL and XG-GNN as deep multi-site learning

approaches; and MindEye2 and MindAligner as self-supervised constructive methods.

1This research
study is conducted
independently and
is not connected
to the author’s
role at the

National Bank of

Canada.

Runtime

OCL Component Ablation Study

• Method 1: Skip both QR and LSH. The raw input Xs is passed directly

through positional encoding and then the Transformer encoder.

• Method 2: Skip LSH. Apply thin QR decomposition to obtain (Qs, Rs),

then concatenate Qs and Rs, followed by positional encoding and the

Transformer.

• Method 3: Skip Positional Encoding. Compute QR and then LSH to get

signature φs; concatenate Qs with the MLP-embedded ss, and feed

directly into the Transformer.

• Method 4: Skip Encoder Transformer. Use the full QR + LSH +

Positional Encoding pipeline, but replace the Transformer encoder with a

bidirectional LSTM of comparable capacity.

• OCLpure : trained on fMRI datasets without the pretraining procedure

❖ To initialize OCL on a multi-site setup, we aggregate the B learned sites via

❖ OCL objective function:

❖ Locality-sensitive hashing (LSH):

❖ Positional Encoding:
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