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A Proofs

Lemma 1 Let each neural responses matrix admit a reduced QR factorization Xs = QsRs with
Q⊤
s Qs = I. Define ϕs = vec(Rs) = vec

(
Q⊤
s Xs

)
. If∥∥ϕ1 − ϕ2

∥∥ < ∥∥ϕ1 − ϕ3

∥∥→ Pr
[
ℓ1 = ℓ2

]
> Pr

[
ℓ1 = ℓ3

]
.

Proof. We use the LSH scheme ℓs =
⌊
(a⊤ϕs + b)/w

⌋
with a is drawn from a p-stable distribution

and b ∼ U [0, w]. In this work, we employ a 2-stable (Gaussian) distribution for our LSH projection
vectors. Define the projected difference ∆1s = a⊤

(
ϕ1 − ϕs

)
, which by the 2-stable property

of Gaussians satisfies ∆1s ∼ N
(
0, ∥ϕ1 − ϕs∥2

)
. The collision event ℓ1 = ℓs is equivalent to

⌊(a⊤ϕ1+ b)/w⌋ = ⌊(a⊤ϕs+ b)/w⌋, which occurs exactly when |∆1s| < w− r for some fractional
offset r. Since r is uniform on [0, w],

Pr
[
ℓ1 = ℓs

]
=

1

w

∫ w

0

Pr
(
|∆1s| < w − r

)
dr.

For ∆∼N (0, σ2), Pr(|∆| < t) =
∫ t
−t

1√
2π σ

e−u
2/(2σ2)du, which is strictly decreasing in σ for any

fixed t > 0 [1]. Therefore, if ∥ϕ1−ϕ2∥ < ∥ϕ1−ϕ3∥, then the smaller variance ∥ϕ1−ϕ2∥2 yields

Pr
[
ℓ1 = ℓ2

]
> Pr

[
ℓ1 = ℓ3

]
.

Remark. In OCL, we truncate to d components with d ≤ mins=1,...,S rank(Xs), so that Qtruncate
s ∈

RTs×d and Rs ∈ Rd×V . We then set ϕs = vec(Rs). Since the full-rank factorization obeys

Rfull
s =

[
Rs

∗s

]
, one has

∥ϕfull
1 − ϕfull

2 ∥2 = ∥ϕ1 − ϕ2∥2 + ∥ ∗1 − ∗2 ∥2 ≥ ∥ϕ1 − ϕ2∥2,

and similarly for views 1 and 3. Therefore if ∥ϕfull
1 −ϕ

full
2 ∥ < ∥ϕ

full
1 −ϕ

full
3 ∥, then also ∥ϕ1−ϕ2∥ <

∥ϕ1 − ϕ3∥. The above 2-stable argument then applies unchanged to the truncated signatures ϕs,
preserving the collision-probability ordering.

∗This research study is conducted independently and is not connected to the author’s role at the National
Bank of Canada.
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Figure S1: Runtime Analysis

Lemma 2 Let each synthetic view be generated by an orthonormal rotation of the base data,
Xs = MUs, U⊤

s Us = I. Write the corresponding QR factor Rs and its flattened signature
ϕs = vec(Rs). Then for any three views X1,X2,X3 generated from M,

Pr
[
ℓ1 = ℓ2

]
= Pr

[
ℓ1 = ℓ3

]
.

In other words, the collision probability of the LSH is identical across all random rotations generated
from M.

Proof. Since each view is generated by an orthonormal rotation of the same base matrix,

Xs = MUs, U⊤
s Us = I,

the reduced QR decomposition gives

Xs = QsRs, Q⊤
s Qs = I.

Hence
Rs = Q⊤

s Xs = Q⊤
s MUs.

so that
ϕs = vec(Rs) = (U⊤

s ⊗Q⊤
s ) vec(M).

Denote As = U⊤
s ⊗Q⊤

s (which is orthonormal since both Us and Qs are), and v = vec(M). By
considering the Gaussian properties of a [2, 3], and hash function

ℓ =

⌊
a⊤v + b

w

⌋
.

For any view s,
a⊤ϕs = a⊤As v = (A⊤

s a)
⊤v

d
= a⊤v,

by the rotational invariance of multivariate Gaussians. Hence the distribution of ℓs depends only on
v = vec(M), not on Us. It follows that for any three views X1,X2,X3 generated from M,

Pr
[
ℓ1 = ℓ2

]
= Pr

[
ℓ1 = ℓ3

]
.

B Evaluating Feature Representation Quality of Pretrained OCLzero

This section evaluates the feature-dependency before and after alignment in the pretrained network
OCLzero. OCL is designed to map multi-subject or multi-site fMRI responses into a latent space
that pulls together embeddings from the same stimulus and pushes apart those from different stimuli,
thereby improving downstream classification. While Section 4 measures representational quality
via classification accuracy, here we directly quantify how OCLzero transforms synthetic data by
computing (i) the Pearson correlation ρ for linear dependence and (ii) the mutual information I for
nonlinear dependence.

On two million raw synthetic samples, we observe

ρwithin
raw = 0.763± 0.162, ρbetween

raw = 0.204± 0.134,
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Figure S2: OCL Component Ablation Study

which after alignment become

ρwithin
aligned = 0.915± 0.042, ρbetween

aligned = −0.075± 0.050.

Similarly, the mean mutual information on raw data is

Iwithin
raw = 0.444± 0.021, Ibetween

raw = 0.022± 0.011,

improving to
Iwithin
aligned = 0.900± 0.011, Ibetween

aligned = 0.003± 0.0001.

These results demonstrate that OCLzero substantially increases both linear and nonlinear dependencies
among same-class embeddings, while effectively decorrelating different-class features.

C Runtime Analysis

We evaluate the runtime of each alignment method on (i) the CMU dataset for multi-subject fMRI
analysis and (ii) the cross-site pair E ⇌ F for multi-site evaluation. All timings were collected on
a PC with the hardware and software configuration detailed in Footnote 2. In Figure S1, we plot
each method’s total fine-tuning and inference time normalized by the runtime of OCL. To ensure
a fair comparison, we exclude the pretraining phase for all self-supervised approaches (MindEye2,
MindAligner, and OCL), measuring only their downstream fine-tuning and evaluation costs. Relative
to linear methods—i.e., FastSRM, ShIndICA, HyperHMM, and SSTL — deep neural network–based
approaches incur higher runtimes due to their more complex model and optimization, but they
consistently achieve superior classification accuracies. We would like to note that during inference on
typical fMRI datasets, OCL requires about 14 GB of VRAM on a single GPU — suggesting that its
computational resource demands are moderate and attainable by many neuroimaging labs equipped
with modern hardware.

D OCL Component Ablation Study

To quantify the contribution of each OCL component, we perform an ablation study on the two
simple cognitive-task datasets in Table 1, viz., CMU and DS232. We compare four simplified variants
against three baselines: (i) the pretrained OCLzero (ii) the OCL model fine-tuned using the pretrained
OCLzero, and (iii) OCLpure that is the complete QR+LSH+PositionalEncoding+Transformer pipeline
but is trained from random initialization (no pretraining). Our ablation architectures include:

• Method 1: Skip both QR and LSH. The raw input Xs is passed directly through positional
encoding and then the Transformer encoder.

• Method 2: Skip LSH. Apply thin QR decomposition to obtain (Qs,Rs), then concatenate
Qs and Rs, followed by positional encoding and the Transformer.

• Method 3: Skip Positional Encoding. Compute QR and then LSH to get signature ϕs;
concatenate Qs with the MLP-embedded ss, and feed directly into the Transformer.

2 OS: Fedora 42, Python: 3.11.9, PyTorch: 2.6, CUDA: 12.6; CPU: AMD EPYC 7551P (64 cores),
RAM: 256G GPU: 2×NVIDIA 4060Ti 16G.
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• Method 4: Skip Encoder Transformer. Use the full QR+LSH+PositionalEncoding pipeline,
but replace the Transformer encoder with a bidirectional LSTM of comparable capacity.

Figure S2 reports classification accuracy for each variant. We observe that: (1) all ablated methods
(Methods 1–4) perform worse than even the pretrained OCLzero model. (2) OCLzero pretrain-
ing consistently boosts downstream fine-tuning accuracy over random initialization. (3) the full
QR+LSH+PositionalEncoding+Transformer pipeline is essential: removing any component incurs a
significant drop in performance. Note that we observe the same performance trends across all other
datasets evaluated in our experiments.

We further highlight that the theoretical analysis presented in Lemma 1 (please see Section A)
demonstrates that the LSH collision probability decreases smoothly as the Euclidean distance between
orthogonal codes increases, offering intrinsic resilience to noise and minor perturbations. To confirm
this property, we performed a series of empirical experiments by injecting Gaussian noise into the
synthetic pretraining data at SNR levels of 10 dB, 5 dB, and 0 dB. In all cases, the classification
accuracy declined by less than 1%, confirming the strong robustness of the method.

E Notations and Algorithms

Table S1 summarizes the notations used throughout this paper. Algorithms S1 and S2 present the
detailed pseudocode for the proposed orthogonal contrastive learning applied to multi-subject and
multi-site fMRI analyses, respectively.
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Table S1: Notations
Symbol Description
S Number of subjects in the training set.
Sb Number of subjects for site b.
Ts Number of time points for subject s, s = 1, . . . , S.
T ≥ maxs=1,...,S Ts Maximum time-series length, i.e., content-window size
V Number of voxels in the region of interest.
N Number of OCL layers.
rs Rank of Xs.
d Embedding dimension (number of features).
d̄ Number of nonzeros in the upper-triangular Rs.
R The set of real numbers.
p Stability exponent for the p-stable distribution (p = 2 in this paper).
w Quantization granularity (LSH bin width).
b ∼ U [0, w] Random offset for LSH.
τ Temperature hyperparameter in contrastive loss LOCL.
µ Margin hyperparameter in between-class loss LOCL.
λ Weight for the between-class term in loss LOCL.
η Learning rate.
ψ Total number of iterations.
k Number of classes in synthetic data.
B Number of distinct training sites in multi-site OCL.
fn Transformation implemented by layer n.
θ Learnable parameters of the OCL online network.
θ̃ Parameters of the target network.
θ̃b Target-encoder parameters for site b.
θ̃sites =

1
B

∑
b θ̃b Aggregated multi-site encoder parameters.

I Identity matrix.
Xs ∈ RTs×V Preprocessed neural response matrix for subject s.
X

(b)
s Preprocessed neural response matrix for subject s in site b.

H0,s = Xs Input to the first layer (f1) for subject s.
Hn,s = fn(Hn−1,s) Output of layer n for subject s.
Zs = HN,s ∈ RTs×d Final online-encoder representation for subject s.
Qfull
s ∈ RTs×rs Orthonormal factor from full QR of Xs.

Qtruncate
s ∈ RTs×d First d columns of Qfull

s .
Qs ∈ RT×d Zero-padded Qtruncate

s to length T .
Rfull
s ∈ Rrs×V Upper-triangular factor from full QR of Xs.

Rs ∈ Rd×V First d rows of Rfull
s .

ms ∈ {0, 1}T Binary padding mask (1 =real time point, 0 =pad).
ϕs ∈ Rd̄ vec(Rs), vectorized nonzero entries.
a ∈ Rd̄ Random vector from a p-stable distribution (p = 2 in this paper).
ℓs = lsh(ϕs) =

⌊
(⟨a, ϕs⟩+ b)/w

⌋
LSH hash index for subject s.

ss ∈ Rd Subject-specific signature embedding from ℓs.
Cs ∈ RT×2d Concatenation of each row of Qs and ss.
E ∈ RT×2d Sinusoidal positional-encoding matrix.
Ps = Cs +E Positional-encoded features.
Ns = Norm(Ps) Layer-wise normalization of Ps.
ys = [ys,1, . . . , ys,Ts

]⊤ Stimulus-label sequence for subject s.
y
(b)
s Stimulus-label sequence for subject s in site b.

M ∈ RT×V Base matrix in synthetic pretraining.
Us ∈ RV×V Random orthonormal rotation for view s in synthetic pretraining.
LOCL(Zs,ys) OCL contrastive loss for subject s.
Pr

[
x
]

Probability of x
π A Classification Model (ν-SVM in our paper)
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Algorithm S1 Orthogonal contrastive learning for multi-subject fMRI analysis

Require: Training data {(Xs,ys)}Ss=1, Testing data {X̃s}S̃s=1, Number of network layers N , Itera-
tions ψ, Learning rate η, Positional encoding E, other internal parameters (T, τ, µ, . . .)

1: # Training Phase
2: Initialize online parameters θ, target parameters θ̃ ← θ (randomly or from pretrained model)
3: for i = 1 to ψ do
4: for s = 1 to S do
5: H0,s ← Xs

6: for n = 1 to N do
7: (Q

(n)
s ,R

(n)
s ,m

(n)
s )← QR decomposition and Truncate on Hn−1,s

8: ϕ
(n)
s ← vec(R

(n)
s )

9: ℓ
(n)
s ← lsh(ϕ

(n)
s )

10: s
(n)
s ← MLP(ℓ

(n)
s )

11: C
(n)
s ← concat(Q

(n)
s , s

(n)
s )

12: P
(n)
s ← C

(n)
s +E

13: N
(n)
s ← Norm(P

(n)
s )

14: Hn,s ← TransformerEncoder(N
(n)
s ,m

(n)
s )

15: end for
16: Zs ← HN,s

17: Calculating contrastive loss LOCL(Zs,ys)
18: θ ← θ − η∇θ LOCL
19: end for
20: θ̃ = 1

ψ θ +
(
1− 1

ψ

)
θ̃

21: end for
22: Train classifier π on {(Zs,ys)}Ss=1
23: # Testing Phase
24: for s = 1 to S̃ do
25: Compute Z̃s via same OCL layers using parameters θ̃
26: Predicting ỹ∗

s ← π
(
Z̃s

)
27: end for
28: return {ỹ∗

s}S̃s=1

Algorithm S2 Orthogonal contrastive learning for multi-site fMRI analysis

Require: Training sites {(X(b),y(b))}Bb=1, Testing sites {X̃(b)}B̃b=1
1: # Training Phase
2: for b = 1 to B do
3: Learning the target network with θ̃b parameters using Algorithm S1
4: end for
5: θ̃sites ← 1

B

∑B
b=1 θ̃b

6: {Z(b)}Bb=1 ← {X(b)}Bb=1 mappings by using the target network with θ̃sites parameters
7: Train global classifier π on features {Z(b)}Bb=1
8: # Testing Phase
9: for b = 1 to B̃ do

10: Z̃(b) ← X̃(b) mappings by using the target network with θ̃sites parameters
11: ỹ(b) ← π

(
Z̃(b)

)
12: end for
13: return Predictions {ỹ(b)}B̃b=1
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