Orthogonal Contrastive Learning for Multi-Representation fMRI Analysis

Supplementary Material

Tony Muhammad Yousefnezhad^{1,2,*}

¹Learning By Machine
²Information Management, National Bank of Canada
Edmonton AB Canada
tony@learningbymachine.com

A Proofs

Lemma 1 Let each neural responses matrix admit a reduced QR factorization $\mathbf{X}_s = \mathbf{Q}_s \mathbf{R}_s$ with $\mathbf{Q}_s^{\top} \mathbf{Q}_s = \mathbf{I}$. Define $\phi_s = \text{vec}(\mathbf{R}_s) = \text{vec}(\mathbf{Q}_s^{\top} \mathbf{X}_s)$. If

$$\|\phi_1 - \phi_2\| < \|\phi_1 - \phi_3\| \to \Pr[\ell_1 = \ell_2] > \Pr[\ell_1 = \ell_3].$$

Proof. We use the LSH scheme $\ell_s = \lfloor (\mathbf{a}^\top \phi_s + b)/w \rfloor$ with \mathbf{a} is drawn from a p-stable distribution and $b \sim U[0,w]$. In this work, we employ a 2-stable (Gaussian) distribution for our LSH projection vectors. Define the projected difference $\Delta_{1s} = \mathbf{a}^\top (\phi_1 - \phi_s)$, which by the 2-stable property of Gaussians satisfies $\Delta_{1s} \sim \mathcal{N}(0, \|\phi_1 - \phi_s\|^2)$. The collision event $\ell_1 = \ell_s$ is equivalent to $\lfloor (\mathbf{a}^\top \phi_1 + b)/w \rfloor = \lfloor (\mathbf{a}^\top \phi_s + b)/w \rfloor$, which occurs exactly when $|\Delta_{1s}| < w - r$ for some fractional offset r. Since r is uniform on [0, w],

$$\Pr[\ell_1 = \ell_s] = \frac{1}{w} \int_0^w \Pr(|\Delta_{1s}| < w - r) dr.$$

For $\Delta \sim \mathcal{N}(0,\sigma^2)$, $\Pr(|\Delta| < t) = \int_{-t}^t \frac{1}{\sqrt{2\pi}\,\sigma} e^{-u^2/(2\sigma^2)} du$, which is strictly decreasing in σ for any fixed t>0 [1]. Therefore, if $\|\phi_1-\phi_2\|<\|\phi_1-\phi_3\|$, then the smaller variance $\|\phi_1-\phi_2\|^2$ yields

$$\Pr[\ell_1 = \ell_2] > \Pr[\ell_1 = \ell_3].$$

Remark. In OCL, we truncate to d components with $d \leq \min_{s=1,\dots,S} \operatorname{rank}(\mathbf{X}_s)$, so that $\mathbf{Q}_s^{\operatorname{truncate}} \in \mathbb{R}^{T_s \times d}$ and $\mathbf{R}_s \in \mathbb{R}^{d \times V}$. We then set $\phi_s = \operatorname{vec}(\mathbf{R}_s)$. Since the full-rank factorization obeys $\mathbf{R}_s^{\operatorname{full}} = \begin{bmatrix} \mathbf{R}_s \\ *_s \end{bmatrix}$, one has

$$\|\phi_1^{\mathrm{full}} - \phi_2^{\mathrm{full}}\|^2 = \|\phi_1 - \phi_2\|^2 + \|*_1 - *_2\|^2 \ \geq \ \|\phi_1 - \phi_2\|^2,$$

and similarly for views 1 and 3. Therefore if $\|\phi_1^{\mathrm{full}} - \phi_2^{\mathrm{full}}\| < \|\phi_1^{\mathrm{full}} - \phi_3^{\mathrm{full}}\|$, then also $\|\phi_1 - \phi_2\| < \|\phi_1 - \phi_3\|$. The above 2-stable argument then applies unchanged to the truncated signatures ϕ_s , preserving the collision-probability ordering.

^{*}This research study is conducted independently and is not connected to the author's role at the *National Bank of Canada*.

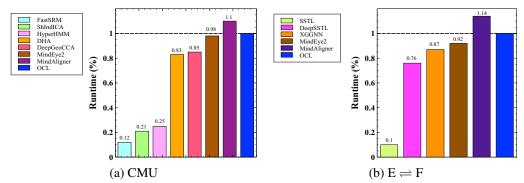


Figure S1: Runtime Analysis

Lemma 2 Let each synthetic view be generated by an orthonormal rotation of the base data, $\mathbf{X}_s = \mathbf{M} \, \mathbf{U}_s$, $\mathbf{U}_s^{\top} \mathbf{U}_s = \mathbf{I}$. Write the corresponding QR factor \mathbf{R}_s and its flattened signature $\phi_s = \operatorname{vec}(\mathbf{R}_s)$. Then for any three views $\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3$ generated from \mathbf{M} ,

$$\Pr[\ell_1 = \ell_2] = \Pr[\ell_1 = \ell_3].$$

In other words, the collision probability of the LSH is identical across all random rotations generated from \mathbf{M} .

Proof. Since each view is generated by an orthonormal rotation of the same base matrix,

$$\mathbf{X}_s = \mathbf{M} \, \mathbf{U}_s, \quad \mathbf{U}_s^{\top} \mathbf{U}_s = \mathbf{I},$$

the reduced QR decomposition gives

$$\mathbf{X}_s = \mathbf{Q}_s \, \mathbf{R}_s, \qquad \mathbf{Q}_s^{\mathsf{T}} \mathbf{Q}_s = \mathbf{I}.$$

Hence

$$\mathbf{R}_s = \mathbf{Q}_s^{\top} \, \mathbf{X}_s = \mathbf{Q}_s^{\top} \, \mathbf{M} \, \mathbf{U}_s.$$

so that

$$\boldsymbol{\phi}_s = \operatorname{vec}(\mathbf{R}_s) = (\mathbf{U}_s^\top \otimes \mathbf{Q}_s^\top) \operatorname{vec}(\mathbf{M}).$$

Denote $\mathbf{A}_s = \mathbf{U}_s^{\top} \otimes \mathbf{Q}_s^{\top}$ (which is orthonormal since both \mathbf{U}_s and \mathbf{Q}_s are), and $\mathbf{v} = \text{vec}(\mathbf{M})$. By considering the Gaussian properties of a [2, 3], and hash function

$$\ell = \left| \frac{\mathbf{a}^{\top} \mathbf{v} + b}{w} \right|.$$

For any view s,

$$\mathbf{a}^{\top} \boldsymbol{\phi}_s = \mathbf{a}^{\top} \mathbf{A}_s \, \mathbf{v} = (\mathbf{A}_s^{\top} \mathbf{a})^{\top} \mathbf{v} \ \stackrel{d}{=} \ \mathbf{a}^{\top} \mathbf{v},$$

by the rotational invariance of multivariate Gaussians. Hence the distribution of ℓ_s depends only on $\mathbf{v} = \text{vec}(\mathbf{M})$, not on \mathbf{U}_s . It follows that for any three views $\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3$ generated from \mathbf{M} ,

$$\Pr\bigl[\ell_1=\ell_2\bigr] \ = \ \Pr\bigl[\ell_1=\ell_3\bigr].$$

B Evaluating Feature Representation Quality of Pretrained $\mathrm{OCL}_{\mathrm{zero}}$

This section evaluates the feature-dependency before and after alignment in the pretrained network OCL_{zero} . OCL is designed to map multi-subject or multi-site fMRI responses into a latent space that pulls together embeddings from the same stimulus and pushes apart those from different stimuli, thereby improving downstream classification. While Section 4 measures representational quality via classification accuracy, here we directly quantify how OCL_{zero} transforms synthetic data by computing (i) the Pearson correlation ρ for linear dependence and (ii) the mutual information I for nonlinear dependence.

On two million raw synthetic samples, we observe

$$\rho_{\mathrm{raw}}^{\mathrm{within}} = 0.763 \pm 0.162, \quad \rho_{\mathrm{raw}}^{\mathrm{between}} = 0.204 \pm 0.134,$$

2

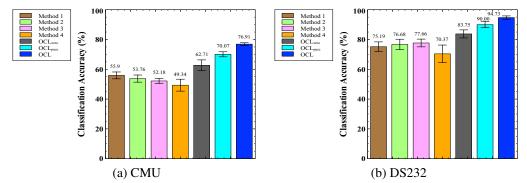


Figure S2: OCL Component Ablation Study

which after alignment become

$$\rho_{\rm aligned}^{\rm within} = 0.915 \pm 0.042, \quad \rho_{\rm aligned}^{\rm between} = -0.075 \pm 0.050.$$

Similarly, the mean mutual information on raw data is

$$I_{\text{raw}}^{\text{within}} = 0.444 \pm 0.021, \quad I_{\text{raw}}^{\text{between}} = 0.022 \pm 0.011,$$

improving to

$$I_{\rm aligned}^{\rm within} = 0.900 \pm 0.011, \quad I_{\rm aligned}^{\rm between} = 0.003 \pm 0.0001.$$

These results demonstrate that OCL_{zero} substantially increases both linear and nonlinear dependencies among same-class embeddings, while effectively decorrelating different-class features.

C Runtime Analysis

We evaluate the runtime of each alignment method on (i) the CMU dataset for multi-subject fMRI analysis and (ii) the cross-site pair $E \rightleftharpoons F$ for multi-site evaluation. All timings were collected on a PC with the hardware and software configuration detailed in Footnote 2 . In Figure S1, we plot each method's total fine-tuning and inference time normalized by the runtime of OCL. To ensure a fair comparison, we exclude the pretraining phase for all self-supervised approaches (MindEye2, MindAligner, and OCL), measuring only their downstream fine-tuning and evaluation costs. Relative to linear methods—*i.e.*, FastSRM, ShIndICA, HyperHMM, and SSTL — deep neural network—based approaches incur higher runtimes due to their more complex model and optimization, but they consistently achieve superior classification accuracies. We would like to note that during inference on typical fMRI datasets, OCL requires about 14 GB of VRAM on a single GPU — suggesting that its computational resource demands are moderate and attainable by many neuroimaging labs equipped with modern hardware.

D OCL Component Ablation Study

To quantify the contribution of each OCL component, we perform an ablation study on the two simple cognitive-task datasets in Table 1, viz., CMU and DS232. We compare four simplified variants against three baselines: (i) the pretrained OCL_{zero} (ii) the OCL model fine-tuned using the pretrained OCL_{zero} , and (iii) OCL_{pure} that is the complete QR+LSH+PositionalEncoding+Transformer pipeline but is trained from random initialization (no pretraining). Our ablation architectures include:

- Method 1: Skip both QR and LSH. The raw input X_s is passed directly through positional
 encoding and then the Transformer encoder.
- Method 2: Skip LSH. Apply thin QR decomposition to obtain $(\mathbf{Q}_s, \mathbf{R}_s)$, then concatenate \mathbf{Q}_s and \mathbf{R}_s , followed by positional encoding and the Transformer.
- Method 3: Skip Positional Encoding. Compute QR and then LSH to get signature ϕ_s ; concatenate \mathbf{Q}_s with the MLP-embedded \mathbf{s}_s , and feed directly into the Transformer.

 $^{^2}$ OS: Fedora 42, Python: 3.11.9, PyTorch: 2.6, CUDA: 12.6; CPU: AMD EPYC 7551P (64 cores), RAM: 256G GPU: $2\times$ NVIDIA 4060Ti 16G.

• **Method 4:** Skip Encoder Transformer. Use the full QR+LSH+PositionalEncoding pipeline, but replace the Transformer encoder with a bidirectional LSTM of comparable capacity.

Figure S2 reports classification accuracy for each variant. We observe that: (1) all ablated methods (Methods 1–4) perform worse than even the pretrained OCL_{zero} model. (2) OCL_{zero} pretraining consistently boosts downstream fine-tuning accuracy over random initialization. (3) the full QR+LSH+PositionalEncoding+Transformer pipeline is essential: removing any component incurs a significant drop in performance. Note that we observe the same performance trends across all other datasets evaluated in our experiments.

We further highlight that the theoretical analysis presented in Lemma 1 (please see Section A) demonstrates that the LSH collision probability decreases smoothly as the Euclidean distance between orthogonal codes increases, offering intrinsic resilience to noise and minor perturbations. To confirm this property, we performed a series of empirical experiments by injecting Gaussian noise into the synthetic pretraining data at SNR levels of $10~{\rm dB}, 5~{\rm dB}$, and $0~{\rm dB}$. In all cases, the classification accuracy declined by less than 1%, confirming the strong robustness of the method.

E Notations and Algorithms

Table S1 summarizes the notations used throughout this paper. Algorithms S1 and S2 present the detailed pseudocode for the proposed orthogonal contrastive learning applied to multi-subject and multi-site fMRI analyses, respectively.

Table S1: Notations

Number of subjects in the training set. Number of subjects for site b . Number of time points for subject $s, s = 1, \dots, S$. Maximum time-series length, $t.e.$, content-window size Number of OCL layers. Number of OCL layers. Rank of X_s . Embedding dimension (number of features). Number of nonzeros in the upper-triangular R_s . The set of real numbers. Stability exponent for the p -stable distribution ($p = 2$ in this paper). Quantization granularity (LSH bin width). Random offset for LSH. Temperature hyperparameter in contrastive loss \mathcal{L}_{OCL} . Margin hyperparameter in contrastive loss \mathcal{L}_{OCL} . Margin hyperparameter in between-class loss \mathcal{L}_{OCL} . Weight for the between-class term in loss \mathcal{L}_{OCL} . Weight for the between-class term in loss \mathcal{L}_{OCL} . Learning rate. Total number of iterations. Number of distinct training sites in multi-site OCL. Transformation implemented by layer n . Learnable parameters of the OCL online network. Parameters of the target network. Target-encoder parameters. Identity matrix. Yeptocessed neural response matrix for subject s . Preprocessed neural response matrix for subject s . Preprocessed neural response matrix for subject s . Output of layer n for subject s . Output of layer n for subject s . Final online-encoder representation for subject s . Orthonormal factor from full QR of X_s . First d columns of $\mathbf{Q}_s^{(n)}$. Prist d cove of $\mathbf{R}_s^{(n)}$. Prist d cove of
Number of subjects for site b . Number of time points for subject $s, s = 1, \ldots, S$. Number of time points for subject $s, s = 1, \ldots, S$. Number of toxels in the region of interest. Number of OCL layers. Rank of \mathbf{X}_s . Embedding dimension (number of features). Number of nonzeros in the upper-triangular \mathbf{R}_s . The set of real numbers. Stability exponent for the p -stable distribution ($p = 2$ in this paper). Quantization granularity (LSH bin width). Random offset for LSH. Temperature hyperparameter in contrastive loss \mathcal{L}_{OCL} . Margin hyperparameter in between-class loss \mathcal{L}_{OCL} . Meight for the between-class term in loss \mathcal{L}_{OCL} . Weight for the between-class term in loss \mathcal{L}_{OCL} . It also the strength of the strength \mathcal{L}_{OCL} and the stre
Number of subjects for site b . Number of time points for subject $s, s = 1, \ldots, S$. Number of time points for subject $s, s = 1, \ldots, S$. Maximum time-series length, $i.e.$, content-window size Number of OCL layers. Rank of \mathbf{X}_s . Embedding dimension (number of features). Number of nonzeros in the upper-triangular \mathbf{R}_s . The set of real numbers. Stability exponent for the p -stable distribution ($p = 2$ in this paper). Quantization granularity (LSH bin width). Random offset for LSH. Temperature hyperparameter in contrastive loss \mathcal{L}_{OCL} . Margin hyperparameter in between-class loss \mathcal{L}_{OCL} . Margin hyperparameter in between-class term in loss \mathcal{L}_{OCL} . Weight for the between-class term in loss \mathcal{L}_{OCL} . Weight for the between-class term in loss \mathcal{L}_{OCL} . It also the series of distinct training sites in multi-site OCL. Transformation implemented by layer n . Learnable parameters of the OCL online network. Parameters of the target network. Parameters of the target network. Target-encoder parameters for site b . Aggregated multi-site encoder parameters. Identity matrix. $\mathbf{X}_s \in \mathbb{R}^{T_s \times V}$ Preprocessed neural response matrix for subject s . Output of layer n for subject s . Output of layer n for subject s . Orthonormal factor from full QR of \mathbf{X}_s . First d columns of $\mathbf{Q}_s^{\text{full}}$. $\mathbf{Q}_s \in \mathbb{R}^{T_s \times V}$
$\begin{array}{lll} T_s & \text{Number of time points for subject } s, s = 1, \dots, S. \\ T \geq \max_{s=1,\dots,S} T_s & \text{Maximum time-series length, $i.e., content-window size} \\ X & \text{Number of voxels in the region of interest.} \\ X & \text{Number of OCL layers.} \\ X_s & \text{Rank of } \mathbf{X}_s. \\ Z_t & \text{Embedding dimension (number of features).} \\ X_t & \text{Number of nonzeros in the upper-triangular } \mathbf{R}_s. \\ The set of real numbers. \\ Stability exponent for the p-stable distribution $(p=2$ in this paper).} \\ X_t & \text{Quantization granularity (LSH bin width).} \\ X_t & \text{Random offset for LSH.} \\ Temperature hyperparameter in contrastive loss \mathcal{L}_{OCL}. \\ Margin hyperparameter in between-class loss \mathcal{L}_{OCL}. \\ Weight for the between-class term in loss \mathcal{L}_{OCL}. \\ Wei$
$\begin{array}{ll} T \geq \max_{s=1,\dots,S} T_s \\ Y \\ $
Number of voxels in the region of interest. Number of OCL layers. Rank of X_s . Embedding dimension (number of features). Number of nonzeros in the upper-triangular R_s . The set of real numbers. Stability exponent for the p -stable distribution ($p=2$ in this paper). Quantization granularity (LSH bin width). Random offset for LSH. Temperature hyperparameter in contrastive loss \mathcal{L}_{OCL} . Margin hyperparameter in between-class loss \mathcal{L}_{OCL} . Weight for the between-class term in loss \mathcal{L}_{OCL} . Weight for the between-class term in loss \mathcal{L}_{OCL} . Learning rate. Total number of iterations. Number of classes in synthetic data. Number of distinct training sites in multi-site OCL. Transformation implemented by layer n . Learnable parameters of the OCL online network. Parameters of the target network. Target-encoder parameters for site b . Aggregated multi-site encoder parameters. Identity matrix. $X_s \in \mathbb{R}^{T_s \times V}$ Preprocessed neural response matrix for subject s . Output of layer n for subject s . Output of layer n for subject s . Orthonormal factor from full QR of X_s . First d columns of $\mathbb{Q}_s^{\text{full}}$. Zero-padded $\mathbb{Q}_s^{\text{tunneate}}$ es $\mathbb{R}^{T_s \times V}$ Upper-triangular factor from full QR of X_s . First d rows of $\mathbb{R}_s^{\text{full}}$. Zero-padded $\mathbb{Q}_s^{\text{tunneate}}$ to length T . Upper-triangular factor from full QR of X_s . First d rows of $\mathbb{R}_s^{\text{full}}$. Zero-padded $\mathbb{Q}_s^{\text{tunneate}}$ to length T . Upper-triangular factor from full QR of X_s . First d rows of $\mathbb{R}_s^{\text{full}}$. Binary padding mask (1 = real time point, 0 = pad). vec(\mathbb{R}_s), vectorized nonzero entries. Random vector from a p -stable distribution ($p=2$ in this paper).
Rank of \mathbf{X}_s . Embedding dimension (number of features). Number of nonzeros in the upper-triangular \mathbf{R}_s . The set of real numbers. Stability exponent for the p -stable distribution ($p=2$ in this paper). Quantization granularity (LSH bin width). Random offset for LSH. Temperature hyperparameter in contrastive loss \mathcal{L}_{OCL} . Weight for the between-class loss \mathcal{L}_{OCL} . Weight for the between-class term in loss \mathcal{L}_{OCL} . Weight for the between-class term in loss \mathcal{L}_{OCL} . Learning rate. Total number of iterations. Number of classes in synthetic data. Number of classes in synthetic data. Number of distinct training sites in multi-site OCL. Transformation implemented by layer n . Learnable parameters of the OCL online network. Parameters of the target network. Target-encoder parameters. Identity matrix. $\mathbf{X}_s \in \mathbb{R}^{T_s \times V}$ Preprocessed neural response matrix for subject s . Input to the first layer (f_1) for subject s . Output of layer n for subject s . Output of layer n for subject s . Final online-encoder representation for subject s . Output of layer n for subject s . Orthonormal factor from full QR of \mathbf{X}_s . First d columns of Q_{full} . Zero-padded $Q_s^{\text{full calculums of }Q_s^{\text{full}}}$. Zero-padded $Q_s^{\text{full calculum of }Q_s^{\text{full}}}$. Zero-padded $Q_s^{\text{full calculum of }Q_s^{\text{full}}}$. Zero-padded $Q_s^{\text{full calculum of }Q_s^{\text{full}}}$. First d rows of R_s^{full} . Binary padding mask (1 =real time point, 0 =pad). $\text{vec}(\mathbf{R}_s)$, vectorized nonzero entries. Random ovector from a p -stable distribution ($p=2$ in this paper).
$ \begin{array}{c} I \\ \overline{d} \\ \overline{d}$
Number of nonzeros in the upper-triangular \mathbf{R}_s . The set of real numbers. Stability exponent for the p -stable distribution $(p=2)$ in this paper). Quantization granularity (LSH bin width). Random offset for LSH. Temperature hyperparameter in contrastive loss $\mathcal{L}_{\mathrm{OCL}}$. Margin hyperparameter in between-class loss $\mathcal{L}_{\mathrm{OCL}}$. Weight for the between-class term in loss $\mathcal{L}_{\mathrm{OCL}}$. Weight for the between-class term in loss $\mathcal{L}_{\mathrm{OCL}}$. Learning rate. Total number of iterations. Number of classes in synthetic data. Number of distinct training sites in multi-site OCL. Transformation implemented by layer n . Learnable parameters of the OCL online network. Parameters of the target network. Target-encoder parameters for site b . Aggregated multi-site encoder parameters. Identity matrix. $\mathbf{X}_s \in \mathbb{R}^{T_s \times V}$ Preprocessed neural response matrix for subject s . Preprocessed neural response matrix for subject s . Output of layer n for subject s . Output of layer n for subject s . Orthonormal factor from full QR of \mathbf{X}_s . First d columns of $\mathbf{Q}_s^{\mathrm{full}} \in \mathbb{R}^{T_s \times V}$ Upper-triangular factor from full QR of \mathbf{X}_s . First d columns of $\mathbf{Q}_s^{\mathrm{full}} \in \mathbb{R}^{T_s \times V}$ Upper-triangular factor from full QR of \mathbf{X}_s . First d columns of $\mathbf{Q}_s^{\mathrm{full}} \in \mathbb{R}^{T_s \times V}$ Binary padding mask $(1 = \text{real time point}, 0 = \text{pad})$. Vec (\mathbf{R}_s) , vectorized nonzero entries. Random vector from a p -stable distribution $(p=2)$ in this paper).
The set of real numbers. Stability exponent for the p -stable distribution ($p=2$ in this paper). Quantization granularity (LSH bin width). Random offset for LSH. Temperature hyperparameter in contrastive loss $\mathcal{L}_{\mathrm{OCL}}$. Weight for the between-class term in loss $\mathcal{L}_{\mathrm{OCL}}$. Weight for the between-class term in loss $\mathcal{L}_{\mathrm{OCL}}$. Weight for the between-class term in loss $\mathcal{L}_{\mathrm{OCL}}$. Weight for the between-class term in loss $\mathcal{L}_{\mathrm{OCL}}$. Learning rate. Total number of iterations. Number of classes in synthetic data. Number of distinct training sites in multi-site OCL. Transformation implemented by layer n . Learnable parameters of the OCL online network. Parameters of the target network. Target-encoder parameters for site b . Aggregated multi-site encoder parameters. Identity matrix. Identity matrix. $\mathbf{X}_s \in \mathbb{R}^{T_s \times V}$ Preprocessed neural response matrix for subject s . Preprocessed neural response matrix for subject s . Output of layer n for subject s . Output of layer n for subject s . Output of layer n for subject s . Pinal online-encoder representation for subject s . Orthonormal factor from full QR of \mathbf{X}_s . First d columns of $\mathbf{Q}_s^{\mathrm{full}}$. $\mathbf{Q}_s^{\mathrm{Full}} \in \mathbb{R}^{T_s \times d}$ Set $\mathbf{Q}_s^{\mathrm{Full}} \in \mathbb{R}^{T$
Stability exponent for the p -stable distribution ($p=2$ in this paper). Quantization granularity (LSH bin width). Random offset for LSH. Temperature hyperparameter in contrastive loss $\mathcal{L}_{\mathrm{OCL}}$. Margin hyperparameter in between-class loss $\mathcal{L}_{\mathrm{OCL}}$. Weight for the between-class term in loss $\mathcal{L}_{\mathrm{OCL}}$. Learning rate. Total number of iterations. Number of classes in synthetic data. Number of distinct training sites in multi-site OCL. Transformation implemented by layer n . Learnable parameters of the OCL online network. Parameters of the target network. Target-encoder parameters for site b . Aggregated multi-site encoder parameters. Identity matrix. $\mathbf{X}_s \in \mathbb{R}^{T_s \times V}$ Preprocessed neural response matrix for subject s . Input to the first layer (f_1) for subject s . Output of layer n for subject s . Output of layer n for subject s . Pinal online-encoder representation for subject s . Orthonormal factor from full QR of \mathbf{X}_s . First d columns of $\mathbf{Q}_s^{\mathrm{full}}$. Since $\mathbf{Q}_s^{\mathrm{full}} \in \mathbb{R}^{T_s \times V}$ Preprocessed neural response matrix for subject s . Orthonormal factor from full QR of \mathbf{X}_s . First d columns of $\mathbf{Q}_s^{\mathrm{full}}$. First d columns of $\mathbf{Q}_s^{\mathrm{full}}$. First d columns of $\mathbf{Q}_s^{\mathrm{full}}$. First d columns of $\mathbf{R}_s^{\mathrm{full}}$. First d columns of $\mathbf{R}_s^{\mathrm{full}}$. Binary padding mask (1 = real time point, 0 = pad). Vec(\mathbf{R}_s), vectorized nonzero entries. Random vector from a p -stable distribution ($p=2$ in this paper).
Quantization granularity (LSH bin width). Random offset for LSH. Temperature hyperparameter in contrastive loss \mathcal{L}_{OCL} . Weight for the between-class loss \mathcal{L}_{OCL} . Weight for the between-class term in loss \mathcal{L}_{OCL} . Learning rate. Total number of iterations. Number of classes in synthetic data. Number of distinct training sites in multi-site OCL. Transformation implemented by layer n . Learnable parameters of the OCL online network. Parameters of the target network. Target-encoder parameters for site b . Aggregated multi-site encoder parameters. Identity matrix. $\mathbf{X}_{s} \in \mathbb{R}^{T_{s} \times V}$ Preprocessed neural response matrix for subject s . Input to the first layer (f_{1}) for subject s . Output of layer n for subject s . Orthonormal factor from full QR of \mathbf{X}_{s} . First d columns of $\mathbf{Q}_{s}^{\text{full}}$. $\mathbf{Q}_{s}^{\text{full}} \in \mathbb{R}^{T_{s} \times V}$ Upper-triangular factor from full QR of \mathbf{X}_{s} . First d rows of $\mathbf{R}_{s}^{\text{full}}$. Single $\mathbf{R}^{\text{full}} \in \mathbb{R}^{T_{s} \times V}$ Upper-triangular factor from full QR of \mathbf{X}_{s} . First d rows of $\mathbf{R}_{s}^{\text{full}}$. Binary padding mask $(1 = \text{real time point}, 0 = \text{pad})$. Vec (\mathbf{R}_{s}) , vectorized nonzero entries. Random vector from a p -stable distribution $(p = 2 \text{ in this paper})$.
Random offset for LSH. Temperature hyperparameter in contrastive loss \mathcal{L}_{OCL} . Margin hyperparameter in between-class loss \mathcal{L}_{OCL} . Weight for the between-class term in loss \mathcal{L}_{OCL} . Weight for the between-class term in loss \mathcal{L}_{OCL} . Learning rate. Total number of iterations. Number of classes in synthetic data. Number of classes in synthetic data. Number of distinct training sites in multi-site OCL. Transformation implemented by layer n . Learnable parameters of the OCL online network. Parameters of the target network. Target-encoder parameters for site b . Aggregated multi-site encoder parameters. Identity matrix. Preprocessed neural response matrix for subject s . Preprocessed neural response matrix for subject s . Input to the first layer (f_1) for subject s . Output of layer n for subject s . Output of layer n for subject s . Final online-encoder representation for subject s . Orthonormal factor from full QR of \mathbf{X}_s . First d columns of $\mathbf{Q}_s^{\text{full}}$. Zero-padded $\mathbf{Q}_s^{\text{funcate}}$ to length T . Upper-triangular factor from full QR of \mathbf{X}_s . First d rows of $\mathbf{R}_s^{\text{full}}$. First d rows of $\mathbf{R}_s^{\text{full}}$. Binary padding mask $(1 = \text{real time point}, 0 = \text{pad})$. Vec (\mathbf{R}_s) , vectorized nonzero entries. Random vector from a p -stable distribution $(p = 2 \text{ in this paper})$.
Temperature hyperparameter in contrastive loss $\mathcal{L}_{\mathrm{OCL}}$. Margin hyperparameter in between-class loss $\mathcal{L}_{\mathrm{OCL}}$. Weight for the between-class term in loss $\mathcal{L}_{\mathrm{OCL}}$. Learning rate. Total number of iterations. Number of classes in synthetic data. Number of distinct training sites in multi-site OCL. Transformation implemented by layer n . Learnable parameters of the OCL online network. Parameters of the target network. Target-encoder parameters for site b . Aggregated multi-site encoder parameters. Identity matrix. $\mathbf{X}_s \in \mathbb{R}^{T_s \times V}$ Preprocessed neural response matrix for subject s . \mathbf{X}_s Preprocessed neural response matrix for subject s . Output of layer n for subject s . Output of layer n for subject s . Final online-encoder representation for subject s . Orthonormal factor from full QR of \mathbf{X}_s . First d columns of $\mathbf{Q}_s^{\mathrm{full}}$. $\mathbf{Q}_s \in \mathbb{R}^{T_s \times V}$ Upper-triangular factor from full QR of \mathbf{X}_s . First d columns of $\mathbf{Q}_s^{\mathrm{full}}$. $\mathbf{Q}_s \in \mathbb{R}^{d \times V}$ $\mathbf{Q}_s \in \mathbb{R}^{d \times V}$ $\mathbf{Q}_s \in \mathbb{R}^{d}$ Equation 17 by $\mathbf{Q}_s \in \mathbb{R}^{d}$ Upper-triangular factor from full QR of \mathbf{X}_s . First d rows of $\mathbf{R}_s^{\mathrm{full}}$ First d rows of $\mathbf{R}_s^{\mathrm{full}}$. Binary padding mask (1 = real time point, 0 = pad). $\mathbf{vec}(\mathbf{R}_s)$, vectorized nonzero entries. Random vector from a p -stable distribution ($p = 2$ in this paper).
$\begin{array}{llll} & & & & & & & & & & & & & & & & & $
Weight for the between-class term in loss \mathcal{L}_{OCL} . Learning rate. Total number of iterations. Number of classes in synthetic data. Number of distinct training sites in multi-site OCL. Transformation implemented by layer n . Learnable parameters of the OCL online network. Parameters of the target network. Target-encoder parameters for site b . Aggregated multi-site encoder parameters. Identity matrix. Preprocessed neural response matrix for subject s . $\mathbf{X}_s \in \mathbb{R}^{T_s \times V}$ Preprocessed neural response matrix for subject s . Input to the first layer (f_1) for subject s . Output of layer n for subject s . Output of layer n for subject s . Orthonormal factor from full QR of \mathbf{X}_s . First d columns of $\mathbf{Q}_s^{\text{full}}$. $\mathbf{Q}_s \in \mathbb{R}^{T_s \times d}$ $\mathbf{Q}_s \in \mathbb{R}^{d}$ Einst d rows of $\mathbf{R}_s^{\text{full}}$. Binary padding mask $(1 = \text{real time point}, 0 = \text{pad})$. $\mathbf{vec}(\mathbf{R}_s)$, vectorized nonzero entries. Random vector from a p -stable distribution $(p = 2 \text{ in this paper})$.
Learning rate. Total number of iterations. Number of classes in synthetic data. Number of classes in synthetic data. Number of distinct training sites in multi-site OCL. Transformation implemented by layer n . Learnable parameters of the OCL online network. Parameters of the target network. Target-encoder parameters for site b . Aggregated multi-site encoder parameters. Identity matrix. $\mathbf{X}_s \in \mathbb{R}^{T_s \times V}$ Preprocessed neural response matrix for subject s . Input to the first layer (f_1) for subject s . Output of layer n for subject s . Orthonormal factor from full QR of \mathbf{X}_s . Pirst d columns of $\mathbf{Q}_s^{\text{full}}$. $\mathbf{Q}_s \in \mathbb{R}^{T_s \times d}$ $\mathbf{Q}_s \in \mathbb{R}^{d_s}$ $\mathbf{Q}_s \in \mathbb{R}^{d_$
Total number of iterations. Number of classes in synthetic data. Number of distinct training sites in multi-site OCL. Transformation implemented by layer n . Learnable parameters of the OCL online network. Parameters of the target network. Target-encoder parameters for site b . Aggregated multi-site encoder parameters. Identity matrix. Yes $\mathbf{X}_s \in \mathbb{R}^{T_s \times V}$ Preprocessed neural response matrix for subject s . Input to the first layer (f_1) for subject s . Output of layer n for subject s . Output of layer n for subject s . Orthonormal factor from full QR of \mathbf{X}_s . First d columns of $\mathbf{Q}_s^{\text{full}}$. $\mathbf{Q}_s \in \mathbb{R}^{T_s \times V}$ Upper-triangular factor from full QR of \mathbf{X}_s . First d rows of $\mathbf{R}_s^{\text{full}}$. $\mathbf{Q}_s \in \mathbb{R}^{d \times V}$ First d rows of $\mathbf{R}_s^{\text{full}}$. Binary padding mask $(1 = \text{real time point}, 0 = \text{pad})$. $\mathbf{vec}(\mathbf{R}_s)$, vectorized nonzero entries. Random vector from a p -stable distribution $(p = 2$ in this paper).
Number of classes in synthetic data. Number of distinct training sites in multi-site OCL. Transformation implemented by layer n . Learnable parameters of the OCL online network. Parameters of the target network. Target-encoder parameters for site b . Aggregated multi-site encoder parameters. Identity matrix. Preprocessed neural response matrix for subject s . Number of classes in synthetic data. Number of distinct training sites in multi-site OCL. Transformation implemented by layer n . Learnable parameters of the OCL online network. Parameters of the target network. Target-encoder parameters for site b . Aggregated multi-site encoder parameters. Identity matrix. Preprocessed neural response matrix for subject s . Output of higher than the first layer (f_1) for subject s . Output of layer n for subject s . Output of layer n for subject s . Output of layer n for subject s . Orthonormal factor from full QR of \mathbf{X}_s . First d columns of $\mathbf{Q}_s^{\mathrm{full}}$. $\mathbf{Q}_s^{\mathrm{Full}} \in \mathbb{R}^{T_s \times d}$ Zero-padded $\mathbf{Q}_s^{\mathrm{truncate}}$ to length T . Upper-triangular factor from full QR of \mathbf{X}_s . First d rows of $\mathbf{R}_s^{\mathrm{full}}$. $\mathbf{Q}_s \in \mathbb{R}^d$ Vupper-triangular factor from full QR of \mathbf{X}_s . First d rows of $\mathbf{R}_s^{\mathrm{full}}$. Binary padding mask $(1 = \text{real time point}, 0 = \text{pad})$. $\mathbf{vec}(\mathbf{R}_s)$, vectorized nonzero entries. Random vector from a p -stable distribution $(p = 2$ in this paper).
Number of distinct training sites in multi-site OCL. Transformation implemented by layer n . Learnable parameters of the OCL online network. Parameters of the target network. Target-encoder parameters for site b . Aggregated multi-site encoder parameters. Identity matrix. Preprocessed neural response matrix for subject s . Input to the first layer (f_1) for subject s . Preprocessed neural response matrix for subject s . Input to the first layer (f_1) for subject s . Output of layer n for subject s . Final online-encoder representation for subject s . Orthonormal factor from full QR of \mathbf{X}_s . Prist d columns of $\mathbf{Q}_s^{\mathrm{full}}$. $\mathbf{Q}_s \in \mathbb{R}^{T_s \times V}$ Upper-triangular factor from full QR of \mathbf{X}_s . First d rows of $\mathbf{R}_s^{\mathrm{full}}$. $\mathbf{R}_s \in \{0,1\}^T$ Binary padding mask $(1 = \text{real time point}, 0 = \text{pad})$. $\mathbf{vec}(\mathbf{R}_s)$, vectorized nonzero entries. Random vector from a p -stable distribution $(p = 2 \text{ in this paper})$.
Transformation implemented by layer n . Learnable parameters of the OCL online network. Parameters of the target network. Target-encoder parameters for site b . Aggregated multi-site encoder parameters. Identity matrix. $\mathbf{X}_s \in \mathbb{R}^{T_s \times V}$ Preprocessed neural response matrix for subject s . Input to the first layer (f_1) for subject s . Input to the first layer (f_1) for subject s . Output of layer n for subject s . Final online-encoder representation for subject s . Orthonormal factor from full QR of \mathbf{X}_s . First d columns of $\mathbf{Q}_s^{\text{full}}$. $\mathbf{Q}_s \in \mathbb{R}^{T_s \times d}$ First d columns of $\mathbf{Q}_s^{\text{full}}$. $\mathbf{Q}_s \in \mathbb{R}^{T_s \times d}$ Zero-padded $\mathbf{Q}_s^{\text{truncate}}$ to length T . Upper-triangular factor from full QR of \mathbf{X}_s . First d rows of $\mathbf{R}_s^{\text{full}}$. $\mathbf{R}_s \in \mathbb{R}^{d \times V}$ First d rows of $\mathbf{R}_s^{\text{full}}$. Binary padding mask $(1 = \text{real time point}, 0 = \text{pad})$. $\mathbf{vec}(\mathbf{R}_s)$, vectorized nonzero entries. $\mathbf{R}_s \in \mathbb{R}^d$ Random vector from a p -stable distribution $(p = 2 \text{ in this paper})$.
Learnable parameters of the OCL online network. Parameters of the target network. Target-encoder parameters for site b . Aggregated multi-site encoder parameters. Identity matrix. Preprocessed neural response matrix for subject s . Preprocessed neural response matrix for subject s in site b . Input to the first layer (f_1) for subject s . Output of layer n for subject s . Output of layer n for subject s . Final online-encoder representation for subject s . Orthonormal factor from full QR of \mathbf{X}_s . First d columns of $\mathbf{Q}_s^{\mathrm{full}}$. Qs $\in \mathbb{R}^{T_s \times r_s}$ Orthonormal factor from full QR of \mathbf{X}_s . First d columns of $\mathbf{Q}_s^{\mathrm{full}}$. Zero-padded $\mathbf{Q}_s^{\mathrm{truncate}}$ to length T . Upper-triangular factor from full QR of \mathbf{X}_s . First d rows of $\mathbf{R}_s^{\mathrm{full}}$. $\mathbf{R}_s \in \mathbb{R}^{d \times V}$ First d rows of $\mathbf{R}_s^{\mathrm{full}}$. Binary padding mask $(1 = \text{real time point}, 0 = \text{pad})$. $\mathbf{P}_s \in \mathbb{R}^{\bar{d}}$ Vec (\mathbf{R}_s) , vectorized nonzero entries. Random vector from a p -stable distribution $(p = 2 \text{ in this paper})$.
Parameters of the target network. Target-encoder parameters for site b . Aggregated multi-site encoder parameters. Identity matrix. $\mathbf{X}_s \in \mathbb{R}^{T_s \times V}$ Preprocessed neural response matrix for subject s . $\mathbf{X}_s(b)$ Preprocessed neural response matrix for subject s . $\mathbf{X}_s(b)$ Preprocessed neural response matrix for subject s . Input to the first layer (f_1) for subject s . Output of layer n for subject s . $\mathbf{X}_s(c)$ Princate $\mathbf{X}_s(c)$ P
$\begin{array}{lll} \tilde{Q}_{\text{sites}} = \frac{1}{B} \sum_b \tilde{\theta}_b \\ \text{Identity matrix.} \\ \mathbf{X}_s \in \mathbb{R}^{T_s \times V} \\ \mathbf{X}_s^{(b)} \\ \mathbf{H}_{0,s} = \mathbf{X}_s \\ \mathbf{H}_{n,s} = f_n(\mathbf{H}_{n-1,s}) \\ \mathbf{Q}_s^{\text{full}} \in \mathbb{R}^{T_s \times r_s} \\ \mathbf{Q}_s^{\text{full}} \in \mathbb{R}^{T_s \times d} \\ \mathbf{Q}_s \in \mathbb{R}^{d_s} \\ $
$\begin{array}{lll} \tilde{Q}_{\text{sites}} = \frac{1}{B} \sum_b \tilde{\theta}_b \\ \text{Identity matrix.} \\ \mathbf{X}_s \in \mathbb{R}^{T_s \times V} \\ \mathbf{X}_s^{(b)} \\ \mathbf{H}_{0,s} = \mathbf{X}_s \\ \mathbf{H}_{n,s} = f_n(\mathbf{H}_{n-1,s}) \\ \mathbf{Q}_s^{\text{full}} \in \mathbb{R}^{T_s \times r_s} \\ \mathbf{Q}_s^{\text{full}} \in \mathbb{R}^{T_s \times d} \\ \mathbf{Q}_s \in \mathbb{R}^{d_s} \\ $
$\begin{array}{lll} \mathbf{X}_s \in \mathbb{R}^{T_s \times V} & \text{Preprocessed neural response matrix for subject } s. \\ \mathbf{X}_s^{(b)} & \text{Preprocessed neural response matrix for subject } s. \\ \mathbf{H}_{0,s} = \mathbf{X}_s & \text{Input to the first layer } (f_1) \text{ for subject } s. \\ \mathbf{H}_{n,s} = f_n(\mathbf{H}_{n-1,s}) & \text{Output of layer } n \text{ for subject } s. \\ \mathbf{Z}_s = \mathbf{H}_{N,s} \in \mathbb{R}^{T_s \times d} & \text{Final online-encoder representation for subject } s. \\ \mathbf{Q}_s^{\text{full}} \in \mathbb{R}^{T_s \times r_s} & \text{Orthonormal factor from full QR of } \mathbf{X}_s. \\ \mathbf{Q}_s \in \mathbb{R}^{T \times d} & \text{First } d \text{ columns of } \mathbf{Q}_s^{\text{full}}. \\ \mathbf{Q}_s \in \mathbb{R}^{T \times d} & \text{Zero-padded } \mathbf{Q}_s^{\text{truncate}} \text{ to length } T. \\ \mathbf{R}_s^{\text{full}} \in \mathbb{R}^{r_s \times V} & \text{Upper-triangular factor from full QR of } \mathbf{X}_s. \\ \mathbf{R}_s \in \mathbb{R}^{d \times V} & \text{First } d \text{ rows of } \mathbf{R}_s^{\text{full}}. \\ \mathbf{m}_s \in \{0,1\}^T & \text{Binary padding mask } (1 = \text{real time point, } 0 = \text{pad}). \\ \boldsymbol{\phi}_s \in \mathbb{R}^{\tilde{d}} & \text{vec}(\mathbf{R}_s), \text{ vectorized nonzero entries.} \\ \mathbf{n} \in \mathbb{R}^{\tilde{d}} & \text{Random vector from a } p\text{-stable distribution } (p = 2 \text{ in this paper}). \\ \end{array}$
$\begin{array}{lll} \mathbf{X}_s \in \mathbb{R}^{T_s \times V} & \text{Preprocessed neural response matrix for subject } s. \\ \mathbf{X}_s^{(b)} & \text{Preprocessed neural response matrix for subject } s. \\ \mathbf{H}_{0,s} = \mathbf{X}_s & \text{Input to the first layer } (f_1) \text{ for subject } s. \\ \mathbf{H}_{n,s} = f_n(\mathbf{H}_{n-1,s}) & \text{Output of layer } n \text{ for subject } s. \\ \mathbf{Z}_s = \mathbf{H}_{N,s} \in \mathbb{R}^{T_s \times d} & \text{Final online-encoder representation for subject } s. \\ \mathbf{Q}_s^{\text{full}} \in \mathbb{R}^{T_s \times r_s} & \text{Orthonormal factor from full QR of } \mathbf{X}_s. \\ \mathbf{Q}_s^{\text{truncate}} \in \mathbb{R}^{T_s \times d} & \text{First } d \text{ columns of } \mathbf{Q}_s^{\text{full}}. \\ \mathbf{Q}_s \in \mathbb{R}^{T \times d} & \text{Zero-padded } \mathbf{Q}_s^{\text{truncate}} \text{ to length } T. \\ \mathbf{R}_s^{\text{full}} \in \mathbb{R}^{r_s \times V} & \text{Upper-triangular factor from full QR of } \mathbf{X}_s. \\ \mathbf{R}_s \in \mathbb{R}^{d \times V} & \text{First } d \text{ rows of } \mathbf{R}_s^{\text{full}}. \\ \mathbf{m}_s \in \{0,1\}^T & \text{Binary padding mask } (1 = \text{real time point, } 0 = \text{pad}). \\ \mathbf{vec}(\mathbf{R}_s), \text{ vectorized nonzero entries.} \\ \mathbf{n} \in \mathbb{R}^{\bar{d}} & \text{Random vector from a } p\text{-stable distribution } (p = 2 \text{ in this paper}). \\ \end{array}$
$\begin{array}{lll} \mathbf{X}_s^{(b)} & \text{Preprocessed neural response matrix for subject s in site b.} \\ \mathbf{H}_{0,s} = \mathbf{X}_s & \text{Input to the first layer } (f_1) \text{ for subject s.} \\ \mathbf{H}_{n,s} = f_n(\mathbf{H}_{n-1,s}) & \text{Output of layer n for subject s.} \\ \mathbf{Z}_s = \mathbf{H}_{N,s} \in \mathbb{R}^{T_s \times d} & \text{Final online-encoder representation for subject s.} \\ \mathbf{Q}_s^{\text{full}} \in \mathbb{R}^{T_s \times r_s} & \text{Orthonormal factor from full QR of \mathbf{X}_s.} \\ \mathbf{Q}_s^{\text{truncate}} \in \mathbb{R}^{T_s \times d} & \text{First d columns of $\mathbf{Q}_s^{\text{full}}$.} \\ \mathbf{Q}_s \in \mathbb{R}^{T \times d} & \text{Zero-padded $\mathbf{Q}_s^{\text{truncate}}$ to length T.} \\ \mathbf{R}_s^{\text{full}} \in \mathbb{R}^{r_s \times V} & \text{Upper-triangular factor from full QR of \mathbf{X}_s.} \\ \mathbf{R}_s \in \mathbb{R}^{d \times V} & \text{First d rows of $\mathbf{R}_s^{\text{full}}$.} \\ \mathbf{m}_s \in \{0,1\}^T & \text{Binary padding mask } (1 = \text{real time point, 0} = \text{pad}). \\ \boldsymbol{\psi}_s \in \mathbb{R}^{\bar{d}} & \text{vec}(\mathbf{R}_s), \text{ vectorized nonzero entries.} \\ \mathbf{a} \in \mathbb{R}^{\bar{d}} & \text{Random vector from a p-stable distribution } (p = 2 \text{ in this paper}). \\ \end{array}$
$\begin{aligned} &\mathbf{H}_{0,s} = \mathbf{X}_s & & & & & & & & & \\ &\mathbf{H}_{n,s} = f_n(\mathbf{H}_{n-1,s}) & & & & & & & \\ &\mathbf{Z}_s = \mathbf{H}_{N,s} \in \mathbb{R}^{T_s \times d} & & & & & & \\ &\mathbf{Q}_s^{\text{full}} \in \mathbb{R}^{T_s \times r_s} & & & & & & \\ &\mathbf{Q}_s^{\text{truncate}} \in \mathbb{R}^{T_s \times d} & & & & & & \\ &\mathbf{Q}_s^{\text{truncate}} \in \mathbb{R}^{T_s \times d} & & & & & \\ &\mathbf{Q}_s^{\text{truncate}} \in \mathbb{R}^{T_s \times d} & & & & & \\ &\mathbf{Q}_s^{\text{truncate}} & & & & & \\ &\mathbf{Q}_s \in \mathbb{R}^{T \times d} & & & & & \\ &\mathbf{Q}_s^{\text{truncate}} & & & \\ &\mathbf{Q}_s^{\text{truncate}} & & & & \\ &\mathbf{Q}_s^{\text{truncate}} & & & \\ &\mathbf{Q}_s^{t$
$\begin{aligned} \mathbf{H}_{n,s} &= f_n(\mathbf{H}_{n-1,s}) \\ \mathbf{Z}_s &= \mathbf{H}_{N,s} \in \mathbb{R}^{T_s \times d} \\ \mathbf{Q}_s^{\text{full}} &\in \mathbb{R}^{T_s \times r_s} \\ \mathbf{Q}_s^{\text{tuncate}} &\in \mathbb{R}^{T_s \times d} \\ \mathbf{Q}_s^{\text{truncate}} &\in \mathbb{R}^{T_s \times d} \\ \mathbf{Q}_s^{\text{truncate}} &\in \mathbb{R}^{T_s \times d} \\ \mathbf{Q}_s &\in \mathbb{R}^{T \times d} \\ \mathbf{Q}_s &\in \mathbb{R}^{T \times d} \\ \mathbf{Q}_s &\in \mathbb{R}^{T \times d} \\ \mathbf{R}_s^{\text{full}} &\in \mathbb{R}^{r_s \times V} \\ \mathbf{R}_s &\in \mathbb{R}^{d \times V} \\ \mathbf{R}_s &\in \mathbb{R}^{d \times V} \\ \mathbf{M}_s &\in \{0,1\}^T \\ \mathbf{D}_s &\in \mathbb{R}^{\bar{d}} \\ \mathbf{C}_s &\in \mathbb{R}^{\bar$
$\begin{aligned} \mathbf{Z}_s &= \mathbf{H}_{N,s} \in \mathbb{R}^{T_s \times d} & \text{Final online-encoder representation for subject } s. \\ \mathbf{Q}_s^{\text{full}} &\in \mathbb{R}^{T_s \times r_s} & \text{Orthonormal factor from full QR of } \mathbf{X}_s. \\ \mathbf{Q}_s^{\text{truncate}} &\in \mathbb{R}^{T_s \times d} & \text{First } d \text{ columns of } \mathbf{Q}_s^{\text{full}}. \\ \mathbf{Q}_s &\in \mathbb{R}^{T \times d} & \text{Zero-padded } \mathbf{Q}_s^{\text{truncate}} \text{ to length } T. \\ \mathbf{R}_s^{\text{full}} &\in \mathbb{R}^{r_s \times V} & \text{Upper-triangular factor from full QR of } \mathbf{X}_s. \\ \mathbf{R}_s &\in \mathbb{R}^{d \times V} & \text{First } d \text{ rows of } \mathbf{R}_s^{\text{full}}. \\ \mathbf{m}_s &\in \{0,1\}^T & \text{Binary padding mask } (1 = \text{real time point, } 0 = \text{pad}). \\ \mathbf{p}_s &\in \mathbb{R}^{\bar{d}} & \text{vec}(\mathbf{R}_s), \text{ vectorized nonzero entries.} \\ \mathbf{n} &\in \mathbb{R}^{\bar{d}} & \text{Random vector from a } p\text{-stable distribution } (p = 2 \text{ in this paper}). \end{aligned}$
$\begin{aligned} \mathbf{Q}_s &\in \mathbb{R}^{T \times d} & \text{Zero-padded } \mathbf{Q}_s^{\text{truncate}} \text{ to length } T. \\ \mathbf{R}_s^{\text{full}} &\in \mathbb{R}^{r_s \times V} & \text{Upper-triangular factor from full } \mathbf{QR} \text{ of } \mathbf{X}_s. \\ \mathbf{R}_s &\in \mathbb{R}^{d \times V} & \text{First } d \text{ rows of } \mathbf{R}_s^{\text{full}}. \\ \mathbf{m}_s &\in \{0,1\}^T & \text{Binary padding mask } (1 = \text{real time point, } 0 = \text{pad}). \\ \boldsymbol{\phi}_s &\in \mathbb{R}^{\bar{d}} & \text{vec}(\mathbf{R}_s), \text{ vectorized nonzero entries.} \\ \mathbf{a} &\in \mathbb{R}^{\bar{d}} & \text{Random vector from a } p\text{-stable distribution } (p = 2 \text{ in this paper}). \end{aligned}$
$\begin{aligned} \mathbf{Q}_s &\in \mathbb{R}^{T \times d} & \text{Zero-padded } \mathbf{Q}_s^{\text{truncate}} \text{ to length } T. \\ \mathbf{R}_s^{\text{full}} &\in \mathbb{R}^{r_s \times V} & \text{Upper-triangular factor from full QR of } \mathbf{X}_s. \\ \mathbf{R}_s &\in \mathbb{R}^{d \times V} & \text{First } d \text{ rows of } \mathbf{R}_s^{\text{full}}. \\ \mathbf{m}_s &\in \{0,1\}^T & \text{Binary padding mask } (1 = \text{real time point, } 0 = \text{pad}). \\ \boldsymbol{\phi}_s &\in \mathbb{R}^{\bar{d}} & \text{vec}(\mathbf{R}_s), \text{ vectorized nonzero entries.} \\ \mathbf{a} &\in \mathbb{R}^{\bar{d}} & \text{Random vector from a } p\text{-stable distribution } (p = 2 \text{ in this paper}). \end{aligned}$
$\begin{aligned} \mathbf{Q}_s &\in \mathbb{R}^{T \times d} & \text{Zero-padded } \mathbf{Q}_s^{\text{truncate}} \text{ to length } T. \\ \mathbf{R}_s^{\text{full}} &\in \mathbb{R}^{r_s \times V} & \text{Upper-triangular factor from full } \mathbf{QR} \text{ of } \mathbf{X}_s. \\ \mathbf{R}_s &\in \mathbb{R}^{d \times V} & \text{First } d \text{ rows of } \mathbf{R}_s^{\text{full}}. \\ \mathbf{m}_s &\in \{0,1\}^T & \text{Binary padding mask } (1 = \text{real time point, } 0 = \text{pad}). \\ \boldsymbol{\phi}_s &\in \mathbb{R}^{\bar{d}} & \text{vec}(\mathbf{R}_s), \text{ vectorized nonzero entries.} \\ \mathbf{a} &\in \mathbb{R}^{\bar{d}} & \text{Random vector from a } p\text{-stable distribution } (p = 2 \text{ in this paper}). \end{aligned}$
$\begin{aligned} \mathbf{R}_s^{\text{full}} &\in \mathbb{R}^{r_s \times V} & \text{Upper-triangular factor from full QR of } \mathbf{X}_s. \\ \mathbf{R}_s &\in \mathbb{R}^{d \times V} & \text{First } d \text{ rows of } \mathbf{R}_s^{\text{full}}. \\ \mathbf{m}_s &\in \{0,1\}^T & \text{Binary padding mask (1 = real time point, 0 = pad).} \\ \phi_s &\in \mathbb{R}^{\bar{d}} & \text{vec}(\mathbf{R}_s), \text{ vectorized nonzero entries.} \\ \mathbf{a} &\in \mathbb{R}^{\bar{d}} & \text{Random vector from a } p\text{-stable distribution } (p=2 \text{ in this paper}). \end{aligned}$
$\mathbf{R}_s \in \mathbb{R}^{d \times V}$ First d rows of $\mathbf{R}_s^{\mathrm{full}}$. $\mathbf{m}_s \in \{0,1\}^T$ Binary padding mask (1 = real time point, 0 = pad). $\mathbf{vec}(\mathbf{R}_s)$, vectorized nonzero entries. $\mathbf{n} \in \mathbb{R}^{\bar{d}}$ Random vector from a p -stable distribution ($p = 2$ in this paper).
$\mathbf{m}_s \in \{0,1\}^T$ Binary padding mask (1 = real time point, 0 = pad). $\mathbf{p}_s \in \mathbb{R}^{\bar{d}}$ vec(\mathbf{R}_s), vectorized nonzero entries. $\mathbf{a} \in \mathbb{R}^{\bar{d}}$ Random vector from a p -stable distribution ($p = 2$ in this paper).
$\phi_s \in \mathbb{R}^{\bar{d}}$ $\operatorname{vec}(\mathbf{R}_s)$, vectorized nonzero entries. $\mathbf{a} \in \mathbb{R}^{\bar{d}}$ Random vector from a p -stable distribution ($p=2$ in this paper).
$\mathbf{a} \in \mathbb{R}^{\bar{d}}$ Random vector from a p -stable distribution ($p=2$ in this paper).
$(-1\sin(\phi) - 1/(9,\phi) + h)/m$ 1 SH hash index for subject s
$\mathbf{s}_s \in \mathbb{R}^d$ Subject-specific signature embedding from ℓ_s .
$\mathbf{C}_s \in \mathbb{R}^{T \times 2d}$ Concatenation of each row of \mathbf{Q}_s and \mathbf{s}_s .
$\mathbf{E} \in \mathbb{R}^{T \times 2d}$ Sinusoidal positional-encoding matrix.
$P_s = C_s + E$ Positional-encoded features.
$\mathbf{N}_s = \operatorname{Norm}(\mathbf{P}_s)$ Layer-wise normalization of \mathbf{P}_s .
$y_s = [y_{s,1}, \dots, y_{s,T_s}]^{\top}$ Stimulus-label sequence for subject s . Stimulus-label sequence for subject s in site b .
$y_s^{(b)}$ Stimulus-label sequence for subject s in site b .
$\mathbf{M} \in \mathbb{R}^{T \times V}$ Base matrix in synthetic pretraining.
$U_s \in \mathbb{R}^{V \times V}$ Random orthonormal rotation for view s in synthetic pretraining.
$\mathcal{C}_{\mathrm{OCL}}(\mathbf{Z}_s, \mathbf{y}_s)$ OCL contrastive loss for subject s .
$\Pr[x]$ Probability of x
A Classification Model (ν -SVM in our paper)

Algorithm S1 Orthogonal contrastive learning for multi-subject fMRI analysis

```
Require: Training data \{(\mathbf{X}_s,\mathbf{y}_s)\}_{s=1}^S, Testing data \{\tilde{\mathbf{X}}_s\}_{s=1}^{\tilde{S}}, Number of network layers N, Iterations \psi, Learning rate \eta, Positional encoding \mathbf{E}, other internal parameters (T,\tau,\mu,\ldots)
  1: # Training Phase
  2: Initialize online parameters \theta, target parameters \tilde{\theta} \leftarrow \theta (randomly or from pretrained model)
  3: for i=1 to \psi do
              for s = 1 to S do
  4:
  5:
                    \mathbf{H}_{0,s} \leftarrow \mathbf{X}_s
                    for n=1 to N do (\mathbf{Q}_s^{(n)}, \mathbf{R}_s^{(n)}, \mathbf{m}_s^{(n)}) \leftarrow \mathsf{QR} decomposition and Truncate on \mathbf{H}_{n-1,s}
  6:
  7:
                          \phi_s^{(n)} \leftarrow \text{vec}(\mathbf{R}_s^{(n)})
  8:
                        \ell_s^{(n)} \leftarrow \operatorname{lsh}(\phi_s^{(n)})
  9:
                        \mathbf{s}_s^{(n)} \leftarrow \text{MLP}(\ell_s^{(n)})
10:
                         \mathbf{C}_s^{(n)} \leftarrow \operatorname{concat}(\mathbf{Q}_s^{(n)}, \mathbf{s}_s^{(n)})
11:
                        \mathbf{P}_s^{(n)} \leftarrow \mathbf{C}_s^{(n)} + \mathbf{E} \\ \mathbf{N}_s^{(n)} \leftarrow \mathrm{Norm}(\mathbf{P}_s^{(n)})
12:
13:
                         \mathbf{H}_{n,s} \leftarrow \operatorname{TransformerEncoder}(\mathbf{N}_s^{(n)}, \mathbf{m}_s^{(n)})
                    end for
15:
                    \mathbf{Z}_s \leftarrow \mathbf{H}_{N,s}
16:
                   Calculating contrastive loss \mathcal{L}_{OCL}(\mathbf{Z}_s, \mathbf{y}_s)
17:
                    \theta \leftarrow \theta - \bar{\eta} \nabla_{\theta} \mathcal{L}_{OCL}
18:
              \begin{array}{ll} \text{end for} \\ \tilde{\theta} = \frac{1}{\psi} \, \theta \ + \ \left(1 - \frac{1}{\psi}\right) \tilde{\theta} \end{array}
19:
20:
22: Train classifier \pi on \{(\mathbf{Z}_s, \mathbf{y}_s)\}_{s=1}^S
23: # Testing Phase
24: for s = 1 to \tilde{S} do
              Compute \tilde{\mathbf{Z}}_s via same OCL layers using parameters \tilde{\theta}
              Predicting \tilde{\mathbf{y}}_s^* \leftarrow \pi(\tilde{\mathbf{Z}}_s)
27: end for
28: return \{\tilde{\mathbf{y}}_{s}^{*}\}_{s=1}^{\tilde{S}}
```

Algorithm S2 Orthogonal contrastive learning for multi-site fMRI analysis

```
Require: Training sites \{(\mathbf{X}^{(b)}, \mathbf{y}^{(b)})\}_{b=1}^{B}, Testing sites \{\tilde{\mathbf{X}}^{(b)}\}_{b=1}^{\tilde{B}}

1: #Training Phase

2: for b=1 to B do

3: Learning the target network with \tilde{\theta}_b parameters using Algorithm S1

4: end for

5: \tilde{\theta}_{\text{sites}} \leftarrow \frac{1}{B} \sum_{b=1}^{B} \tilde{\theta}_b

6: \{\mathbf{Z}^{(b)}\}_{b=1}^{B} \leftarrow \{\mathbf{X}^{(b)}\}_{b=1}^{B} mappings by using the target network with \tilde{\theta}_{\text{sites}} parameters

7: Train global classifier \pi on features \{\mathbf{Z}^{(b)}\}_{b=1}^{B}

8: #Testing Phase

9: for b=1 to \tilde{B} do

10: \tilde{\mathbf{Z}}^{(b)} \leftarrow \tilde{\mathbf{X}}^{(b)} mappings by using the target network with \tilde{\theta}_{\text{sites}} parameters

11: \tilde{\mathbf{y}}^{(b)} \leftarrow \pi(\tilde{\mathbf{Z}}^{(b)})

12: end for

13: return Predictions \{\tilde{\mathbf{y}}^{(b)}\}_{b=1}^{\tilde{B}}
```

References

- [1] Martin Aumüller, Tobias Christiani, Rasmus Pagh, and Francesco Silvestri. Distance-sensitive hashing. In *Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems*, pages 89–104, 2018.
- [2] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing scheme based on p-stable distributions. In *Proceedings of Symposium on Computational Geometry (SoCG)*, pages 253–262, 2004.
- [3] Hongkai Nguyen. Lecture notes: Sketching and *p*-stable distributions. CS261, Stanford University, 2019. Definition 2.1.