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A Proofs

Lemma 1 Let each neural responses matrix admit a reduced QR factorization X; = Qs R with
Q! Q. = L Define ¢, = vec(R,,) = VeC(Q;r XS). If

|61 = @2l < [l¢1 = @s]| = Prler = £2] > Pr[ty = 5]

Proof. We use the LSH scheme (; = |(a' ¢, + b)/w| with a is drawn from a p-stable distribution
and b ~ U[0, w]. In this work, we employ a 2-stable (Gaussian) distribution for our LSH projection
vectors. Define the projected difference A;, = a' (qbl - ¢s), which by the 2-stable property
of Gaussians satisfies Ay, ~ N(0,[|¢; — ¢,]|?). The collision event £; = /; is equivalent to

(@l ¢, +b)/w| = [(aT ¢, +b)/w], which occurs exactly when |A| < w —r for some fractional
offset . Since r is uniform on [0, w],

Pr[€1 = és] = %/ Pr(|A13| <wW-— T) dr.
0

For A~N(0,0%), Pr(|A| < t) = fit \/%O_e’”Q/(ZUQ)du, which is strictly decreasing in o for any

fixed t > 0 []. Therefore, if ||p; — @ || < || — ]|, then the smaller variance ||¢p; — ¢, ||? yields
Pr [61 = EQ} > Pr Vl = 63] .

Remark. In OCL, we truncate to d components with d < min,—; g rank(Xj), so that Qtruneate ¢

RT:%4 and R, € R4V, We then set ¢, = vec(R,). Since the full-rank factorization obeys

R = [1}] , one has

S

full full
11" — @5 11" = Ny — ol + [ 51 — =2 [* = [y — &5]°,

and similarly for views 1 and 3. Therefore if [| @i — S || < [|pIM — S|, then also ||, — || <
|[¢1 — @5l The above 2-stable argument then applies unchanged to the truncated signatures ¢,,

preserving the collision-probability ordering. O

*This research study is conducted independently and is not connected to the author’s role at the National
Bank of Canada.
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Figure S1: Runtime Analysis

Lemma 2 Let each synthetic view be generated by an orthonormal rotation of the base data,
Xs = MU,, U/U, = I Write the corresponding OR factor R and its flattened signature
¢, = vec(Ry). Then for any three views X1, X, X3 generated from M,

Pr [61 = fg] = Pr[ﬁl = 63} .

In other words, the collision probability of the LSH is identical across all random rotations generated
Sfrom M.

Proof. Since each view is generated by an orthonormal rotation of the same base matrix,
X,=MU,, U/U,=1I,

the reduced QR decomposition gives

Xs = Qs RSa Q;FQS =1L
Hence
R,=Q! X, =Q/MU,.
so that
¢, = vec(Rg) = (U;r ® QZ) vec(M).

Denote A, = U] ® Q. (which is orthonormal since both U, and Q; are), and v = vec(M). By
considering the Gaussian properties of a [2} 3], and hash function

-
a'v+bd
= {w |
w
For any view s,
algp,=a'A,v=(Ala)'v L aly,

by the rotational invariance of multivariate Gaussians. Hence the distribution of ¢4 depends only on
v = vec(M), not on U. It follows that for any three views X1, X, X3 generated from M,

PI‘Vl == gg] = Pl‘[gl = fg}

B Evaluating Feature Representation Quality of Pretrained OCL,,,

This section evaluates the feature-dependency before and after alignment in the pretrained network
OCLygero. OCL is designed to map multi-subject or multi-site fMRI responses into a latent space
that pulls together embeddings from the same stimulus and pushes apart those from different stimuli,
thereby improving downstream classification. While Section 4 measures representational quality
via classification accuracy, here we directly quantify how OCL,¢,, transforms synthetic data by
computing (i) the Pearson correlation p for linear dependence and (ii) the mutual information I for
nonlinear dependence.

On two million raw synthetic samples, we observe

pMthin — () 763 4+ 0.162,  pbetveen = 0.204 + 0.134,

praw
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Figure S2: OCL Component Ablation Study
which after alignment become

puiny =0.915 +0.042,  pliivest = —0.075 4 0.050.
Similarly, the mean mutual information on raw data is

D — 0.444 4+ 0.021,  T2geer = 0.022 +0.011,

raw
improving to

Iy = 0.900 £ 0.011,  Iheves™ = 0.003 = 0.0001.

These results demonstrate that OCL,,,, substantially increases both linear and nonlinear dependencies
among same-class embeddings, while effectively decorrelating different-class features.

C Runtime Analysis

We evaluate the runtime of each alignment method on (i) the CMU dataset for multi-subject fMRI
analysis and (ii) the cross-site pair E = F for multi-site evaluation. All timings were collected on
a PC with the hardware and software configuration detailed in Footnote El In Figure we plot
each method’s total fine-tuning and inference time normalized by the runtime of OCL. To ensure
a fair comparison, we exclude the pretraining phase for all self-supervised approaches (MindEye2,
MindAligner, and OCL), measuring only their downstream fine-tuning and evaluation costs. Relative
to linear methods—i.e., FastSRM, ShIndICA, HyperHMM, and SSTL — deep neural network—based
approaches incur higher runtimes due to their more complex model and optimization, but they
consistently achieve superior classification accuracies. We would like to note that during inference on
typical fMRI datasets, OCL requires about 14 GB of VRAM on a single GPU — suggesting that its
computational resource demands are moderate and attainable by many neuroimaging labs equipped
with modern hardware.

D OCL Component Ablation Study

To quantify the contribution of each OCL component, we perform an ablation study on the two
simple cognitive-task datasets in Table 1, viz., CMU and DS232. We compare four simplified variants
against three baselines: (i) the pretrained OCL,ey, (ii) the OCL model fine-tuned using the pretrained
OCLero, and (iii) OCLpyre that is the complete QR+LSH+PositionalEncoding+Transformer pipeline
but is trained from random initialization (no pretraining). Our ablation architectures include:

* Method 1: Skip both QR and LSH. The raw input X is passed directly through positional
encoding and then the Transformer encoder.

» Method 2: Skip LSH. Apply thin QR decomposition to obtain (Qs, Rs), then concatenate
Q; and R, followed by positional encoding and the Transformer.

* Method 3: Skip Positional Encoding. Compute QR and then LSH to get signature ¢s;
concatenate Q with the MLP-embedded s, and feed directly into the Transformer.

2 0S: Fedora 42, Python: 3.11.9, PyTorch: 2.6, CUDA: 12.6; CPU: AMD EPYC 7551P (64 cores),
RAM: 256G GPU: 2xNVIDIA 4060Ti 16G.



* Method 4: Skip Encoder Transformer. Use the full QR+LSH+PositionalEncoding pipeline,
but replace the Transformer encoder with a bidirectional LSTM of comparable capacity.

Figure[S2]reports classification accuracy for each variant. We observe that: (1) all ablated methods
(Methods 1-4) perform worse than even the pretrained OCL,e,, model. (2) OCL,c,, pretrain-
ing consistently boosts downstream fine-tuning accuracy over random initialization. (3) the full
QR+LSH+PositionalEncoding+Transformer pipeline is essential: removing any component incurs a
significant drop in performance. Note that we observe the same performance trends across all other
datasets evaluated in our experiments.

We further highlight that the theoretical analysis presented in Lemma 1 (please see Section [A)
demonstrates that the LSH collision probability decreases smoothly as the Euclidean distance between
orthogonal codes increases, offering intrinsic resilience to noise and minor perturbations. To confirm
this property, we performed a series of empirical experiments by injecting Gaussian noise into the
synthetic pretraining data at SNR levels of 10 dB, 5 dB, and 0 dB. In all cases, the classification
accuracy declined by less than 1%, confirming the strong robustness of the method.

E Notations and Algorithms

Table [ST| summarizes the notations used throughout this paper. Algorithms [ST]and [S2] present the
detailed pseudocode for the proposed orthogonal contrastive learning applied to multi-subject and
multi-site fMRI analyses, respectively.



Table S1: Notations
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X, € RT:xV

x{

HO,S = Xs

Hn,s = fn(Hn—l,s)
Z,=Hy, € RT-xd
Qiull c RTSX’FS
Qgruncate c RTSXd
Qs c RTXd

Rgull c RT‘SXV

R, € RV

m, € {0,1}7

¢, € RY

acR?

DT D

05 = 1sh(¢s) = | ((a, ¢s) + b) /]

s, € R4

Cs c RT><2d

E € RTXQd
P,=C,+E
N, = Norm(Py)

Ys ): [ys,lv s ays,Ts]T

Number of subjects in the training set.

Number of subjects for site b.

Number of time points for subject s,s = 1,..., 5.
Maximum time-series length, i.e., content-window size
Number of voxels in the region of interest.

Number of OCL layers.

Rank of X,.

Embedding dimension (number of features).

Number of nonzeros in the upper-triangular R.;.

The set of real numbers.

Stability exponent for the p-stable distribution (p = 2 in this paper).

Quantization granularity (LSH bin width).

Random offset for LSH.

Temperature hyperparameter in contrastive loss Locr.-
Margin hyperparameter in between-class loss Locr-
Weight for the between-class term in loss Locr-
Learning rate.

Total number of iterations.

Number of classes in synthetic data.

Number of distinct training sites in multi-site OCL.
Transformation implemented by layer 7.

Learnable parameters of the OCL online network.
Parameters of the target network.

Target-encoder parameters for site b.

Aggregated multi-site encoder parameters.

Identity matrix.

Preprocessed neural response matrix for subject s.
Preprocessed neural response matrix for subject s in site b.
Input to the first layer (f7) for subject s.

Output of layer n for subject s.

Final online-encoder representation for subject s.
Orthonormal factor from full QR of Xj.

First d columns of Q!

Zero-padded QFr'neate to length T
Upper-triangular factor from full QR of X.

First d rows of R,

Binary padding mask (1 =real time point, 0 =pad).
vec(R), vectorized nonzero entries.

Random vector from a p-stable distribution (p = 2 in this paper).
LSH hash index for subject s.

Subject-specific signature embedding from /.
Concatenation of each row of Q; and s;.

Sinusoidal positional-encoding matrix.
Positional-encoded features.

Layer-wise normalization of P.

Stimulus-label sequence for subject s.

Stimulus-label sequence for subject s in site b.

Base matrix in synthetic pretraining.

Random orthonormal rotation for view s in synthetic pretraining.
OCL contrastive loss for subject s.

Probability of x

A Classification Model (-SVM in our paper)




Algorithm S1 Orthogonal contrastive learning for multi-subject fMRI analysis

Require: Training data {(X,,y,)}5_,, Testing data {X }5 1» Number of network layers N, Itera-
tions v, Learning rate ), Positional encoding E, other internal parameters (7', 7, p, . . .)
1. # Training Phase
2: Initialize online parameters 6, target parameters 6 < € (randomly or from pretrained model)
3: fori =1to 1 do

4. fors=1to.Sdo

5: HO,s — XS

6 forn =1to IV do

7: (Qg"), R, (")) < QR decomposition and Truncate on H,,_1 g
8 o Vec(R(n))

9: 6« 1sh(¢{™)

10: s MLP(€("))

11: an) — concat(QS g"))

12: P!« c™ +E

13: (n> — Norm(P( ))

14: H, , + TranbformerEncoder(Ngn), m&”))
15: end for

16: Z, HN,s

17: Calculating contrastive loss Locr(Zs,ys)

18: 0+ 0—-—nVeLocL

19:  end for

. g_ 1 _1)g

20: 9_w9+(1 w)a
21: end for

22: Train classifier 7 on {(Z,y;)}5_,

23:. # Testing Phase

24: for s = 1tOSdo

25:  Compute Z, via same OCL layers using parameters 6
26:  Predicting y < TI'(ZS)

27: end for ~

28: return {y:}°_,

Algorithm S2 Orthogonal contrastive learning for multi-site fMRI analysis

Requlre Training sites {(X(®), y(®))}5 | Testing sites {X(®) }b

. # Training Phase

forb =1to B do ~
Learning the target network with 8, parameters using Algorithm

end for

bltei B Zb 1 ob

{ZONWE |« {(X®}B | mappings by using the target network with f;cs parameters

Train global classifier 7 on features {Z(®)}7 |

# Testing Phase

for b = 1to B do
Z0)  X®) mappings by using the target network with Osites parameters
7O W(z(b))

: end for .

: return Predictions {§(®}Z

@RS U‘b"’“”

—_— = =
wYT 29
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