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Developing a neural classification model from multi-subject
task-based fMRI brain activation patterns.

Given labeled spatiotemporal fMRI data, we train a
classification model capable of predicting task conditions for
unseen test samples.

These tasks may involve visual or auditory stimuli, movie
viewing, or other sensory experiments performed by the
subject during the fMRI scan.

However, multi-subject neural responses must be
functionally aligned due to variations in individual brain
connectomes.

From a machine learning perspective, each subject’s data
represents a distinct transformation of a shared underlying
pattern, which must be accounted for before training a
classifier.
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Key Challenges

Inter-subject variability leads to misaligned neural representations
across individuals.

High-dimensional, noisy, and limited-sample fMRI data hinder
effective model training and generalization.

Temporal misalignment of BOLD responses remains a major
issue—most CCA-based alignment methods struggle with this
due to their static shared-space structure, which cannot fully
capture temporal dynamics across subjects.

Cross-site heterogeneity and scanner differences introduce
domain shifts and batch effects. Lack of domain-adaptive,
multi-representation learning frameworks limits robustness in
large-scale, multi-subject fMRI analysis.

Recent advances in Transformer architectures offer a promising
solution for modeling long-term temporal dependencies and
complex spatiotemporal patterns in fMRI analysis.
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Orthogonal Contrastive Learning
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Orthogonal Contrastive Learning - QR decomposition
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Each OCL layer has four primary
components:

QR decomposition, which yields
orthonormal feature bases to
decorrelate signals and enhance
the signal-to-noise ratio



Orthogonal Contrastive Learning - Locality-sensitive hashing

Train Set

'

Subject 1

&

Subject S
—
(Testing Set)

Testing Set

5

Subject 1

Subject §

|

( Online Network (N layers)

R, € ]R(IXV

Hashing
Signature Embedding
innear)

Vectorization
Locality-Sensitive

X, e RV
l Rl’ull c RuxV

QR Decomposition
Truncate to d dimensions

Temporal Zero
Padding
l Q> c ]RTxrl

qull c RT“X“
Qurumeate ¢ RTxd

Each OCL layer has four primary
components:

QR decomposition, which yields
orthonormal feature bases to
decorrelate signals and enhance
the signal-to-noise ratio
Locality-sensitive hashing (LSH),
which produces compact
subject-specific signatures



Orthogonal Contrastive Learning - Positional encoding
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Each OCL layer has four primary
components:

QR decomposition, which yields
orthonormal feature bases to
decorrelate signals and enhance
the signal-to-noise ratio
Locality-sensitive hashing (LSH),

which produces compact
subject-specific signatures
Positional encoding, which
integrates fMRI temporal

information into spatial feature
representations



Orthogonal Contrastive Learning - Transformer encoder
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Each OCL layer has four primary
components:

QR decomposition, which yields
orthonormal feature bases to
decorrelate signals and enhance
the signal-to-noise ratio
Locality-sensitive hashing (LSH),

which produces compact
subject-specific signatures
Positional encoding, which
integrates fMRI temporal
information into spatial feature
representations

A transformer encoder integrates
these inputs, ensuring that neural
representations from the same
stimulus become closely aligned,
while representations of different
stimuli remain distinct



Orthogonal Contrastive Learning - Exponential moving average
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We design a dual-encoder
architecture:

An online network, which actively
learns representations through a
contrastive objective

A target network, whose
parameters are gradually
updated as a moving average of
the online network’s parameters.

This dual-network setup stabilizes
training and ensures consistent

representations across subjects



e  OCL objective function:
Orthogonal Contrastive Learning
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Experimental Setup and Methodology

e \We first pretrained OCL using 2 million synthetic fMRI-like data

e \We compare OCL with 7 single-site methods:

FastSRM and HyperHMM as baselines

ShindICA as a non-CCA method;

DHA and DeepGeoCCA as deep multi-view learning approaches

MindEye2 and MindAligner as self-supervised constructive learning approaches.

o O O O

e \We compare OCL with 5 multi-site techniques
o SSTL as a baseline
o DeepSSTL and XG-GNN as deep multi-site learning approaches
o MindEye2 and MindAligner as self-supervised constructive methods.



The fMRI datasets

e \We used whole-brain ROI
e Each scan was registered to the MNI152 T1-weighted template
e \We used 10 datasets to benchmark OCL performance

ID Title Type S |yl Ts Site(#)
A” Stop signal (DS007) Decision 20 4 472 B (3)
B Conditional stop signal (DS008) Decision 13 4 317 A1)
CMU  Meanings of Nouns Semantic 9 12 402
(& Simon task (DS101) Simon 21 2 302 D()
D Flanker task (DS102) Flanker 26 2 292 C(1)
DS232  Face-coding models with individual-face Visual 10 4 760
E Integration of sweet taste: Study 1 (DS229) Flavour 15 6 580 F(1)
F Integration of sweet taste: Study 3 (DS231) Flavour 9 6 650 E()
Forrest  Forrest Gump movie Visual 20 10 451
Raiders Raiders movie Visual 10 7 924

S is the number of subjects; |y | is the number of stimulus categories; T’s is the number of time points per subject; Site lists the other datasets
whose neural responses can be transferred to this dataset. # represents the number of sites in the corresponding dataset. * this dataset is

partitioned into three independent ‘sites’—pseudo-word naming (A1), letter naming (A2), and manual response (A3)



Classification Analysis: Temporally Aligned versus Temporally Unaligned Data
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Clasification Accuracy (%)

Classification Accuracy (%)

Classification Analysis: Movie stimuli

1000 1200

—e—  FastSRM ——8— HyperHMM -@- DeepGeoCCA - MindAligner —3%— OCL
~@— ShIndICA X- DHA -4#--  MindEye2 =  OCL.ss
95 95
90 § ;\? 20 ;\'.‘
85 E’ E 85 E‘
- - - -
75 k° = £ 75 £
z Z z
70 B - 70 -
= = = x|
65 < < 65 =}
80 200 400 600 800 10001200 200 400 600 800 10001200 oo 200 400 600 800 10001200 200 400 600 800
# of voxels per hemisphere # of voxels per hemisphere # of voxels per hemisphere # of voxels per hemisphere
(a) Forrest (TRs = 100) (b) Forrest (TRs = 400) (c) Forrest (TRs = 800) (d) Forrest (TRs = 2000)
85 85 ¥ X ¥ X
z z 75 e e
- E M P :
2 S 0k o O X @7 St 2
= . B aET 8- -
£ espF Pt £
5 I F T —F—& <+ _ s
: NS o= i
5 S ss5) 5
50 50 50

0 " " " "
100 150 200 250 300 350 400 450
# of voxels per hemisphere

(e) Raiders (TRs = 100)

100 150 200 250 300 350 400 450
# of voxels per hemisphere

(f) Raiders (TRs = 400)

100 150 200 250 300 350 400 450
# of voxels per hemisphere

(g) Raiders (TRs = 800)

100 150 200 250 300 350 400 450
# of voxels per hemisphere

(h) Raiders (TRs = 2000)



Classification Accuracy (%)

Multi-site Classification Analysis

g

L

:

*

3
=
T

R7.86 89.46
- 86.99

0
%,
%

@ A=B

Classification Accuracy (%)

g

:

2

5

o
=
T

97.55
8732 8937 716

8274 8162 8417

0
8 9 + %, %, °¢‘ o,
* %s:’% ""9.‘,“%\ “ ¥

(b)C =D

g

3
=
T

=
=
T

Classification Accuracy (%)
S 2

§7.33

8552 8481

93.14
83.7

100

-3
=

&

Classification Accuracy (%)
2 2

93.14
837

855 8481 Sl

%, % % <
% %%Q%,’ n.*:%.%\ 0, %

(d) Pairs of {Al, A2, A3, B}




Conclusion

e We introduced orthogonal contrastive learning (OCL), a unified framework that addresses task-based
fMRI’s key challenges:
o Low signal-to-noise ratio
o High dimensionality
o Variable time-series lengths

e OCL employs a dual-encoder design: an online network and a target network whose weights track
the online network via exponential moving average to stabilize learning.

e Each OCL network layer combines
o QR decomposition for orthogonal feature extraction
o Locality-sensitive hashing (LSH) to produce compact subject-specific signatures
o Positional encoding to embed temporal structure alongside spatial features
o Atransformer encoder to generate discriminative, stimulus-aligned embeddings, trained with a
contrastive loss that pulls together same-stimulus responses and pushes apart
different-stimulus responses.



r§_, Learning By Machine
Thank You

Tony M. Yousefnezhad

tony@learningbymachine.com

Learning By Machine

My website OCL GitHub NeurlPS 2025

CERVAYIY


https://www.learningbymachine.com/

