

Orthogonal Contrastive Learning for Multi-Representation fMRI Analysis

Tony M. Yousefnezhad

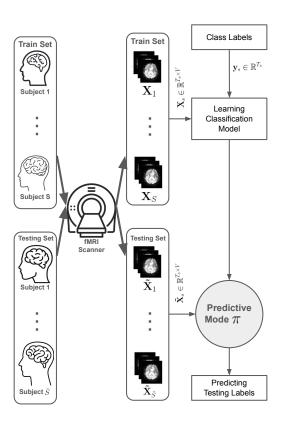
tony@learningbymachine.com

Learning By Machine

OCL GitHub

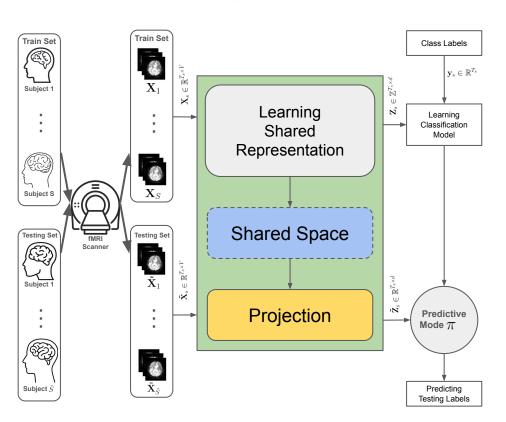
NeurIPS 2025

Motivation



- Developing a neural classification model from multi-subject task-based fMRI brain activation patterns.
- Given labeled spatiotemporal fMRI data, we train a classification model capable of predicting task conditions for unseen test samples.
- These tasks may involve *visual or auditory stimuli, movie viewing, or other sensory experiments* performed by the subject during the fMRI scan.
- However, multi-subject neural responses must be functionally aligned due to variations in individual brain connectomes.
- From a machine learning perspective, each subject's data represents a distinct transformation of a shared underlying pattern, which must be accounted for before training a classifier.

Functional Alignment



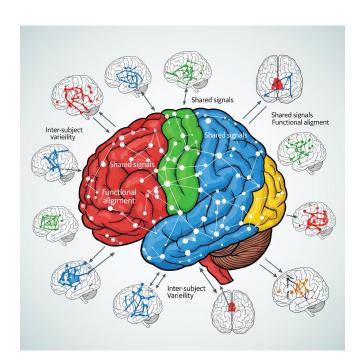
- Functional alignment first learns a new representation from the training fMRI data, capturing a shared underlying pattern across subjects such that neural responses to the same stimuli are aligned among all individuals.
- We then train the classifier on the newly learned representation rather than on the raw neural responses.
- A commonly used classical approach is Generalized Canonical Correlation Analysis (GCCA), which has been developed in various deterministic and probabilistic forms:

$$rg\min_{\mathbf{R_s},\mathbf{G}, heta} \sum_{s=1}^{S} rac{ ext{Neural responses}}{\|f_{ heta}(\mathbf{X}_s)\mathbf{R}_s - \mathbf{G}\|_F^2} \\ rg\min_{\mathbf{Rotation Matrix}} Subject to $\mathbf{G}^{ op}\mathbf{G} = \mathbf{I}$$$

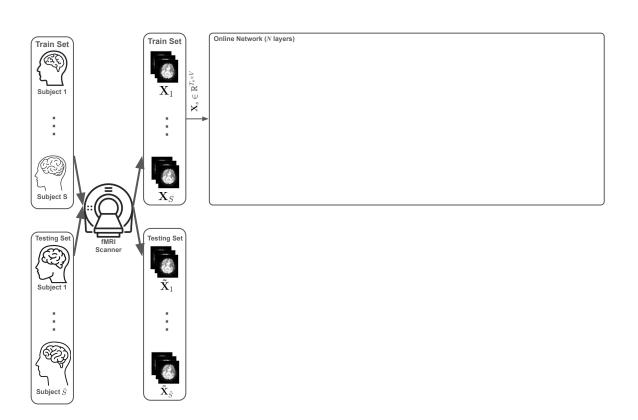
 Function f could be a linear, classic kernel function, or even a deep neural network

Key Challenges

- Inter-subject variability leads to misaligned neural representations across individuals.
- High-dimensional, noisy, and limited-sample fMRI data hinder effective model training and generalization.
- Temporal misalignment of BOLD responses remains a major issue—most CCA-based alignment methods struggle with this due to their static shared-space structure, which cannot fully capture temporal dynamics across subjects.
- Cross-site heterogeneity and scanner differences introduce domain shifts and batch effects. Lack of domain-adaptive, multi-representation learning frameworks limits robustness in large-scale, multi-subject fMRI analysis.
- Recent advances in Transformer architectures offer a promising solution for modeling long-term temporal dependencies and complex spatiotemporal patterns in fMRI analysis.

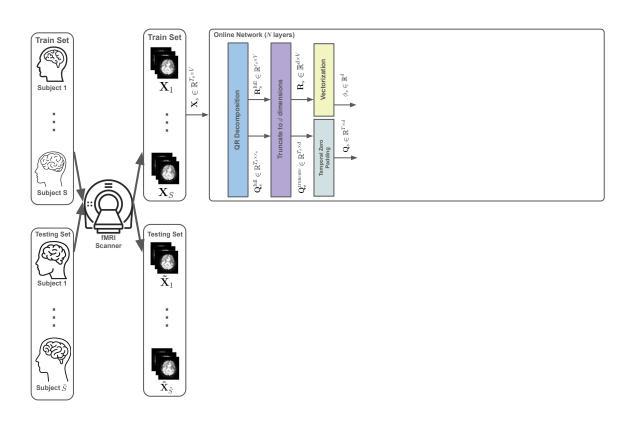


Orthogonal Contrastive Learning



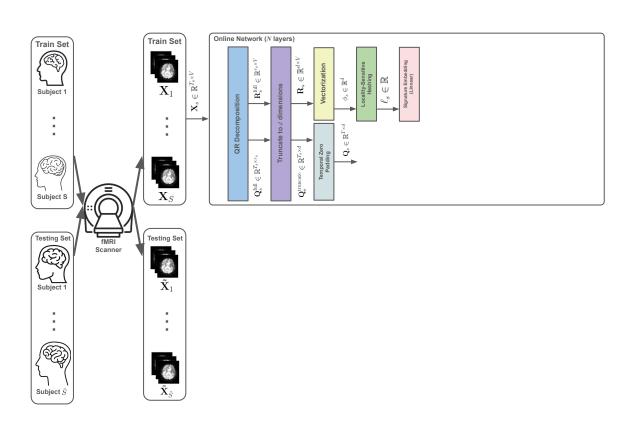
Each OCL layer has four primary components:

Orthogonal Contrastive Learning - QR decomposition



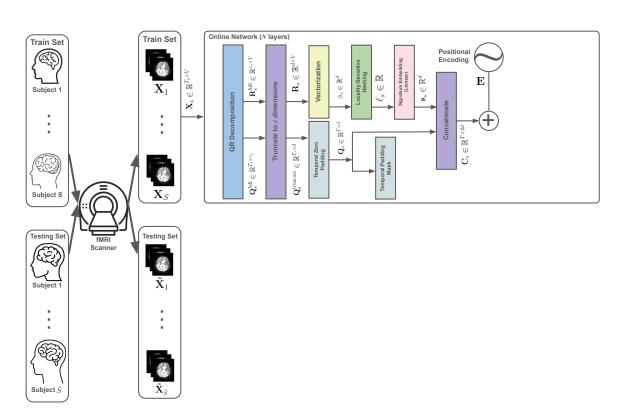
- Each OCL layer has four primary components:
- QR decomposition, which yields orthonormal feature bases to decorrelate signals and enhance the signal-to-noise ratio

Orthogonal Contrastive Learning - Locality-sensitive hashing



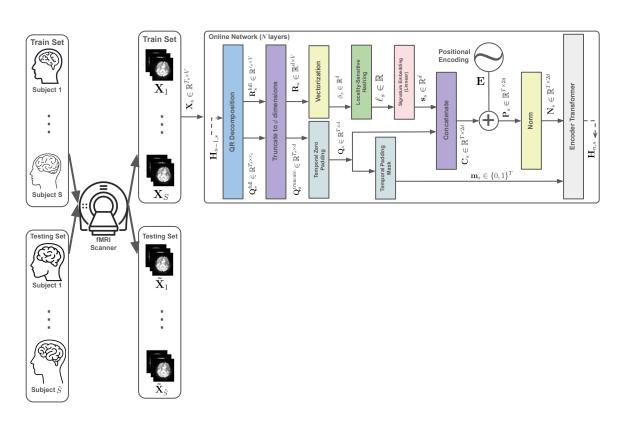
- Each OCL layer has four primary components:
- QR decomposition, which yields orthonormal feature bases to decorrelate signals and enhance the signal-to-noise ratio
- Locality-sensitive hashing (LSH),
 which produces compact
 subject-specific signatures

Orthogonal Contrastive Learning - Positional encoding



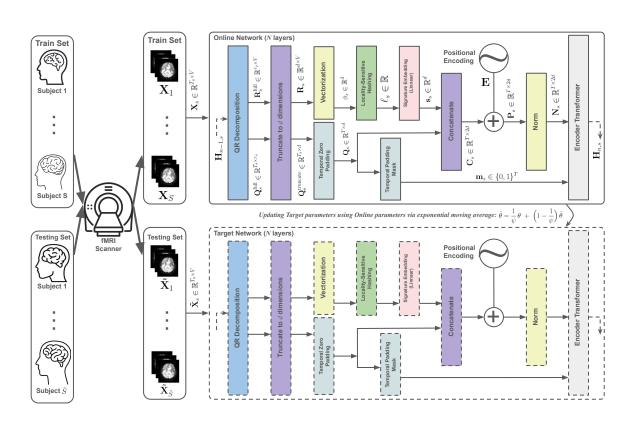
- Each OCL layer has four primary components:
- QR decomposition, which yields orthonormal feature bases to decorrelate signals and enhance the signal-to-noise ratio
- Locality-sensitive hashing (LSH),
 which produces compact
 subject-specific signatures
- Positional encoding, which integrates fMRI temporal information into spatial feature representations

Orthogonal Contrastive Learning - Transformer encoder



- Each OCL layer has four primary components:
- QR decomposition, which yields orthonormal feature bases to decorrelate signals and enhance the signal-to-noise ratio
- Locality-sensitive hashing (LSH),
 which produces compact
 subject-specific signatures
- Positional encoding, which integrates fMRI temporal information into spatial feature representations
- A transformer encoder integrates these inputs, ensuring that neural representations from the same stimulus become closely aligned, while representations of different stimuli remain distinct

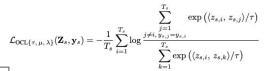
Orthogonal Contrastive Learning - Exponential moving average



- We design a dual-encoder architecture:
- An online network, which actively learns representations through a contrastive objective
- A target network, whose parameters are gradually updated as a moving average of the online network's parameters.
- This dual-network setup stabilizes training and ensures consistent representations across subjects

Orthogonal Contrastive Learning

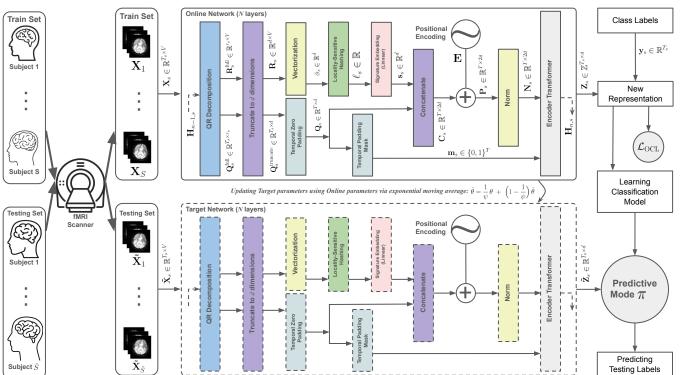
OCL objective function:



$$+\lambda \frac{1}{T_s^2} \sum_{i=1}^{T_s} \sum_{\substack{j=1\\y_{s,j} \neq y_{s,i}}}^{T_s} \log \left(1 + \exp\left(\langle z_{s,i}, z_{s,j} \rangle / \tau - \mu\right)\right).$$

- We learn a contrastive loss that pulls same-stimulus responses together and pushes different-stimulus responses apart
- Trained OCL models can facilitate multi-site fMRI analysis through transfer learning based on orthogonal contrastive embeddings:

$$ilde{ heta}_{
m sites} \ = \ rac{1}{B} \sum_{b=1}^{B} ilde{ heta}_b rac{ ext{Single-site}}{ ext{parameters}}$$



Experimental Setup and Methodology

We first pretrained OCL using 2 million synthetic fMRI-like data

- We compare OCL with 7 single-site methods:
 - FastSRM and HyperHMM as baselines
 - ShIndICA as a non-CCA method;
 - DHA and DeepGeoCCA as deep multi-view learning approaches
 - MindEye2 and MindAligner as self-supervised constructive learning approaches.

- We compare OCL with 5 multi-site techniques
 - SSTL as a baseline
 - DeepSSTL and XG-GNN as deep multi-site learning approaches
 - MindEye2 and MindAligner as self-supervised constructive methods.

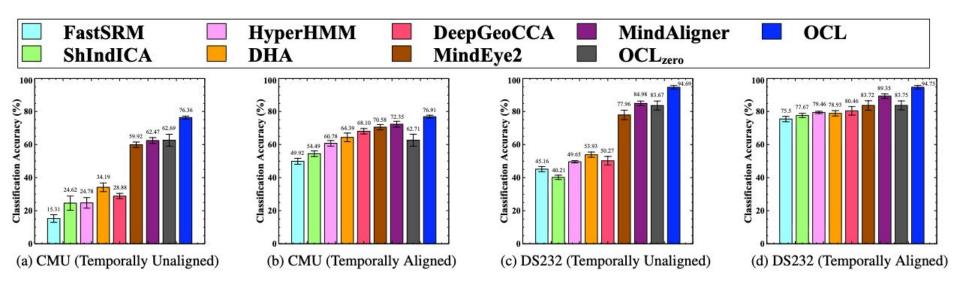
The fMRI datasets

- We used whole-brain ROI
- Each scan was registered to the MNI152 T1-weighted template
- We used 10 datasets to benchmark OCL performance

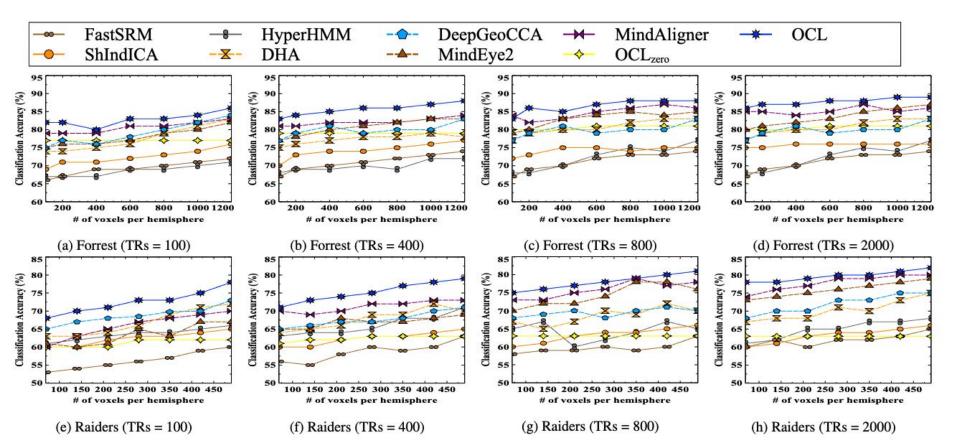
ID	Title	Type	S	$ \mathbf{y} $	T_s	Site(#)
A*	Stop signal (DS007)	Decision	20	4	472	B (3)
В	Conditional stop signal (DS008)	Decision	13	4	317	A(1)
CMU	Meanings of Nouns	Semantic	9	12	402	
C	Simon task (DS101)	Simon	21	2	302	D(1)
D	Flanker task (DS102)	Flanker	26	2	292	C(1)
DS232	Face-coding models with individual-face	Visual	10	4	760	
\mathbf{E}	Integration of sweet taste: Study 1 (DS229)	Flavour	15	6	580	F(1)
F	Integration of sweet taste: Study 3 (DS231)	Flavour	9	6	650	E(1)
Forrest	Forrest Gump movie	Visual	20	10	451	
Raiders	Raiders movie	Visual	10	7	924	

S is the number of subjects; $|\mathbf{y}|$ is the number of stimulus categories; T_s is the number of time points per subject; *Site* lists the other datasets whose neural responses can be transferred to this dataset. # represents the number of sites in the corresponding dataset. * this dataset is partitioned into three independent 'sites'—pseudo-word naming (A1), letter naming (A2), and manual response (A3)

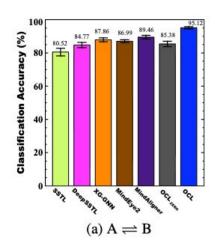
Classification Analysis: Temporally Aligned versus Temporally Unaligned Data

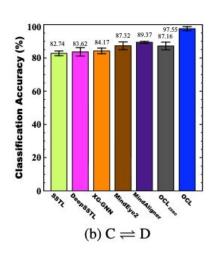


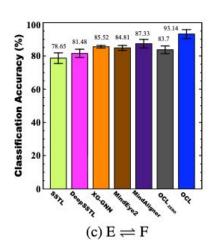
Classification Analysis: Movie stimuli

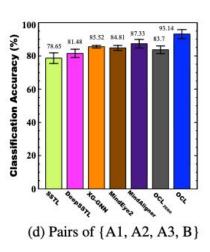


Multi-site Classification Analysis







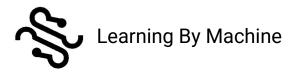


Conclusion

- We introduced orthogonal contrastive learning (OCL), a unified framework that addresses task-based fMRI's key challenges:
 - Low signal-to-noise ratio
 - High dimensionality
 - Variable time-series lengths

OCL employs a dual-encoder design: an online network and a target network whose weights track
the online network via exponential moving average to stabilize learning.

- Each OCL network layer combines
 - QR decomposition for orthogonal feature extraction
 - Locality-sensitive hashing (LSH) to produce compact subject-specific signatures
 - Positional encoding to embed temporal structure alongside spatial features
 - A transformer encoder to generate discriminative, stimulus-aligned embeddings, trained with a contrastive loss that pulls together same-stimulus responses and pushes apart different-stimulus responses.



Thank You

Tony M. Yousefnezhad

tony@learningbymachine.com

Learning By Machine

My website

OCL GitHub

NeurIPS 2025

