
Multi-Region Neural Representation A novel model for decoding visual stimuli in human brains

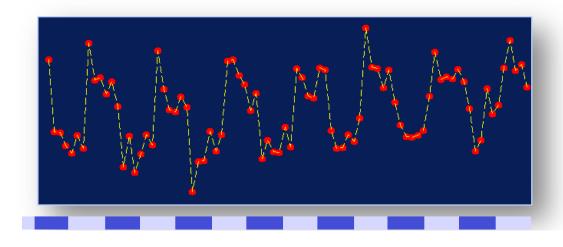
Muhammad Yousefnezhad, Daoqiang Zhang

School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China

MOTIVATION

> A session of preprocessed fMRI dataset:

DATASETS


iBRAIN

 \succ This paper utilizes three data sets, shared by www.openfmri.org, for running empirical studies:

Title	ID	U	р	\mathbf{t}	Х	Y	Ζ
Visual Object Recognition	DS105	71	8	121	79	95	79
Word and Object Processing	DS107	98	4	164	53	63	52
Multi-subject, multi-modal	DS117	171	2	210	64	61	33

U is the number of subject; p denotes the number of visual stimuli categories; t is the number of scans in unites of TRs (Time of Repetition); X, Y, Z are the size of 3D images.

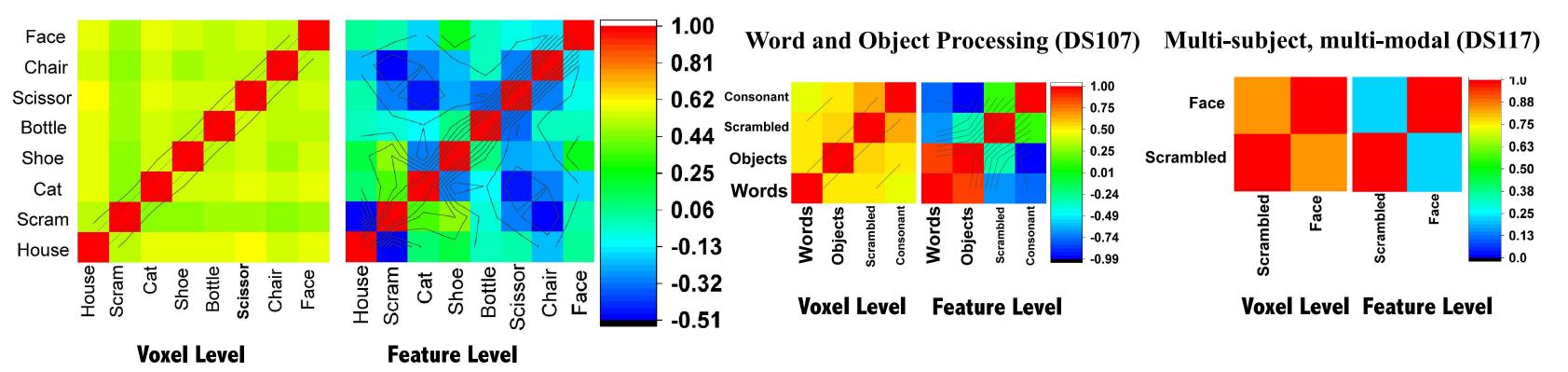
Blood Oxygen Level Dependent (BOLD) signals

Goals

- 1. Selecting a set of effective snapshots rather than using whole of the **noisy and sparse time series.**
- 2. Extracting robust features from the selected snapshots.
- **3.** Improving the performance of the generated cognitive model.

METHOD

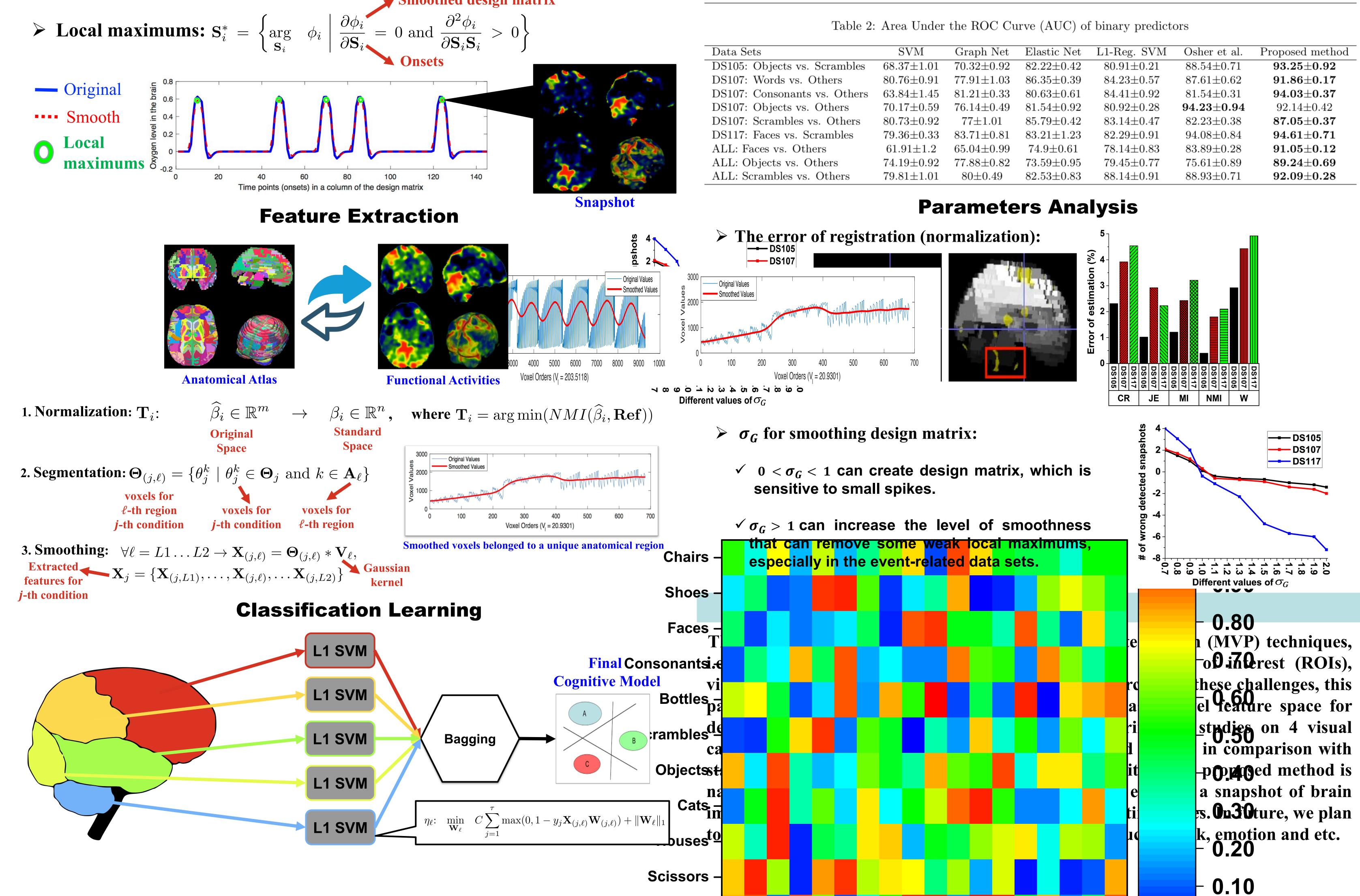
The proposed method is applied in three stages: firstly, snapshots of brain image (each snapshot represents neural activities for a unique stimulus) are selected by finding local maximums in the smoothed version of the design matrix. Then, features are generated in three steps, including normalizing to standard space, segmenting the snapshots in the form of automatically detected anatomical regions, and removing noise by Gaussian smoothing in the level of ROIs.


Snapshot Selection

Smoothed design matrix

EXPERIMENTAL RESULTS

Correlation Analysis


Visual Object Recognition (DS105)

Classification Analysis

Table 1: Accuracy of binary predictors

Data Sets	SVM	Graph Net	Elastic Net	L1-Reg. SVM	Osher et al.	Proposed method
DS105: Objects vs. Scrambles	$71.65 {\pm} 0.97$	$81.27 {\pm} 0.59$	$83.06 {\pm} 0.36$	$85.29 {\pm} 0.49$	$90.82{\pm}1.23$	$94.32{\pm}0.16$
DS107: Words vs. Others	$82.89 {\pm} 1.02$	$78.03 {\pm} 0.87$	$88.62 {\pm} 0.52$	$86.14 {\pm} 0.91$	$90.21 {\pm} 0.83$	$92.04{\pm}0.09$
DS107: Consonants vs. Others	$67.84 {\pm} 0.82$	$83.01 {\pm} 0.56$	$82.82 {\pm} 0.37$	$85.69 {\pm} 0.69$	$84.54 {\pm} 0.99$	$96.73{\pm}0.19$
DS107: Objects vs. Others	$73.32{\pm}1.67$	$77.93 {\pm} 0.29$	84.22 ± 0.44	$83.32 {\pm} 0.41$	$95.62{\pm}0.83$	$93.07 {\pm} 0.27$
DS107: Scrambles vs. Others	$83.96 {\pm} 0.87$	$79.37 {\pm} 0.82$	$87.19 {\pm} 0.26$	$86.45 {\pm} 0.62$	$88.1 {\pm} 0.78$	$\textbf{90.93}{\pm}\textbf{0.71}$
DS117: Faces vs. Scrambles	$81.25 {\pm} 1.03$	$85.19 {\pm} 0.56$	$85.46 {\pm} 0.29$	$86.61 {\pm} 0.61$	$96.81 {\pm} 0.79$	$96.31 {\pm} 0.92$
ALL: Faces vs. Others	$66.27 {\pm} 1.61$	$68.37 {\pm} 1.31$	$75.91{\pm}0.74$	$80.23 {\pm} 0.72$	$84.99 {\pm} 0.71$	$89.99{\pm}0.31$
ALL: Objects vs. Others	$75.61 {\pm} 0.57$	$78.37 {\pm} 0.71$	$76.79 {\pm} 0.94$	$80.14 {\pm} 0.47$	$79.23 {\pm} 0.25$	$92.44{\pm}0.92$
ALL: Scrambles vs. Others	$81.92 {\pm} 0.71$	81.08 ± 1.23	$84.18 {\pm} 0.42$	$88.23 {\pm} 0.81$	$90.5 {\pm} 0.73$	$95.39{\pm}0.18$

