

Nanjing University of Aeronautics and Astronautics College of Computer Science and Technology

Multi-Region Neural Representation A novel model for decoding visual stimuli in human brains

Muhammad Yousefnezhad, Daoqiang Zhang SIAM International Conference on Data Mining (SDM17)

Presented by Muhammad Yousefnezhad

2017 / March

Motivation

Multi-Region Neural Representation: A novel model for decoding visual stimuli in human brains

Motivation

Blood Oxygen Level Dependent (BOLD) signals

Basic Concepts

The Human Brain Decoding

Smith, Nature, 2013

The Human Brain Decoding

Smith, Nature, 2013

The first level analysis

□ This paper uses Generalized Least Squares (GLS) approach for estimating optimized solution:

$$\widehat{\beta} = \left(\left(\mathbf{D}^{\mathsf{T}} \mathbf{\Sigma}^{-1} \mathbf{D} \right)^{-1} \mathbf{D}^{\mathsf{T}} \mathbf{\Sigma}^{-1} \mathbf{F} \right)^{\mathsf{T}} Var(\varepsilon) = \mathbf{\Sigma} \sigma^2 \neq \mathbb{I} \sigma^2$$

The first level analysis

□ This paper uses Generalized Least Squares (GLS) approach for estimating optimized solution:

$$\widehat{\boldsymbol{\beta}} = \left(\left(\mathbf{D}^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \mathbf{D} \right)^{-1} \mathbf{D}^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \mathbf{F} \right)^{\mathsf{T}} Var(\varepsilon) = \boldsymbol{\Sigma} \sigma^2 \neq \mathbb{I} \sigma^2$$

What is the Design Matrix?

What is the Design Matrix?

Multi-Region Neural Representation

Multi-Region Neural Representation

- The proposed method includes three steps:
 - **1. Snapshots Selection**
 - 2. Feature Extraction
 - 2.1 Normalizing snapshots to standard space
 - 2.2 Segmenting the snapshots in the form of anatomical regions
 - **2.3** Removing noise in the level of ROIs.
 - **3. Ensemble Learning**
- \circ The graphical pipeline of the proposed method:

Multi-Region Neural Representation: A novel model for decoding visual stimuli in human brains

Definition of snapshots

Onsets (time points):
$$\mathbf{S} = \{\mathbf{S}_1, \dots, \mathbf{S}_i, \dots, \mathbf{S}_p\}$$

Design Matrix: $\mathbf{D} = \{\mathbf{d}_1, \dots, \mathbf{d}_i, \dots, \mathbf{d}_p\}$
Gaussian Kernel: $\widehat{\mathbf{G}} = \left\{ \exp\left(\frac{-\widehat{\mathbf{g}}^2}{2\sigma_G^2}\right) \mid \widehat{\mathbf{g}} \in \mathbb{Z} \text{ and } -2\lceil \sigma_G \rceil \leq \widehat{\mathbf{g}} \leq 2\lceil \sigma_G \rceil \right\}, \ \mathbf{G} = \frac{\widehat{\mathbf{G}}}{\sum_j \widehat{\mathbf{g}}_j}$
Smoothed Design Matrix: $\phi_i = \mathbf{d}_i * \mathbf{G} = (\mathbf{S}_i * \mathbf{H}) * \mathbf{G}, \ \mathbf{\Phi} = \{\phi_1, \phi_2, \dots, \phi_p\}$

The local maximum points:
$$\mathbf{S}_{i}^{*} = \left\{ \begin{array}{cc} \arg & \phi_{i} \\ \mathbf{S}_{i} \end{array} \middle| \left. \frac{\partial \phi_{i}}{\partial \mathbf{S}_{i}} \right. = \left. 0 \right. \operatorname{and} \left. \frac{\partial^{2} \phi_{i}}{\partial \mathbf{S}_{i} \mathbf{S}_{i}} \right. > \left. 0 \right\} \right\}$$

The set of snapshots can be formulated as follows:

$$\widehat{\Psi} = \{ \mathbf{f}_j^\mathsf{T} \mid \mathbf{f}_j^\mathsf{T} \in \mathbf{F}^\mathsf{T} \text{ and } j \in \mathbf{S}^* \} = \{ \widehat{\psi_1}, \widehat{\psi_2}, \dots, \widehat{\psi_k}, \dots \widehat{\psi_q} \} \in \mathbb{R}^{m \times q}$$
of voxels

10 of 28

of conditions

Definition of snapshots (examples)

Block Based Example:

Event Based Example:

Definition of snapshots (examples)

Block Based Example:

Feature Extraction

- The second key idea is extracting the features of snapshots based on an anatomical atlas for removing noise and sparsity and improving performance of learning.
- Three steps:

 \checkmark

- Normalizing snapshots to standard space
 - Segmenting the snapshots in the form of anatomical regions
 - Removing noise in the level of ROIs.

Anatomical Atlas

Functional Activities

Step 1: Normalizing snapshots to standard space

- For reducing the time complexity, this paper uses β values for each category of stimuli to find a transformation matrix for mapping snapshots from the original space to the standard space.
- $\begin{array}{ccc} \mathbf{T}_i \colon & \widehat{\beta}_i \in \mathbb{R}^m & \to & \beta_i \in \mathbb{R}^n \\ & & \mathbf{Original\ Space} & & \mathbf{Standard\ Space} \\ \hline & \mathbf{Transformation:} & \mathbf{T}_i = \arg\min(NMI(\widehat{\beta}_i, \mathbf{Ref})) \end{array}$

$$J Snapshot Mappings: \mathbf{T}_{j}^{*}: \widehat{\psi}_{j} \in \mathbb{R}^{m} \rightarrow \psi_{j} \in \mathbb{R}^{n} \implies \psi_{j} = \left(\left(\widehat{\psi}_{j} \right)^{\mathsf{T}} \mathbf{T}_{j}^{*} \right)^{\mathsf{T}}$$

lacksquare Applying non-zero correlations to snapshots: $m{\Theta}_j = \psi_j \circ eta_j^*$

where:

$$\begin{pmatrix} \mathbf{T}_{j}^{*}, \beta_{j}^{*} \end{pmatrix} = Select(\widehat{\psi_{j}}, \mathbf{T}, \beta) = \{ (\mathbf{T}_{i}, \beta_{i}) \mid \\ \mathbf{T}_{i} \in \mathbf{T}, \ \beta_{i} \in \beta \ , \ \widehat{\psi_{j}} \text{ is belonged to the } i - th \\ \text{category} \implies \widehat{\psi_{j}} \propto \beta_{i} \propto \mathbf{T}_{i} \}$$

Step 2: Segmenting the snapshots in the form of anatomical regions

- The basic assumption is that the voxels belong to an anatomical regions must behave in unison for a each unique task.
- $\Box \text{ Anatomical Atlas: } \mathbf{A} \in \mathbb{R}^n = \{\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_\ell, \dots, \mathbf{A}_L\}, \\ \cap_{\ell=1}^L \{\mathbf{A}_\ell\} = \emptyset, \ \cup_{\ell=1}^L \{\mathbf{A}_\ell\} = \mathbf{A}$

 \Box A segmented snapshot based on the i - th region can be denoted as follows:

$$\Theta_{(j,\ell)} = \{ \theta_j^k \mid \theta_j^k \in \Theta_j \text{ and } k \in \mathbf{A}_\ell \}$$

□ The automatically detected active regions can be also defined as follows:

$$\boldsymbol{\Theta}_{j}^{*} = \left\{ \boldsymbol{\Theta}_{(j,\ell)} | \boldsymbol{\Theta}_{(j,\ell)} \subset \boldsymbol{\Theta}_{j} \text{ and } \sum_{\substack{\theta_{(j,\ell)}^{k} \in \boldsymbol{\Theta}_{(j,\ell)}}} |\theta_{(j,\ell)}^{k}| \neq 0 \right\}$$

Step 3: Removing noise in the level of ROIs

□ This paper smooths voxels belong to each anatomical region.

□ A Gaussian kernel for each anatomical region can be defined as follows:

$$\sigma_{\ell} = \frac{N_{\ell}^2}{5N_{\ell}^2 \log N_{\ell}} \qquad \text{# of voxels in } \ell - th \text{ region}$$
$$\widehat{\mathbf{V}}_{\ell} = \left\{ \exp\left(\frac{-\widehat{\mathbf{v}}^2}{2\sigma_{\ell}}\right) \middle| \ \widehat{\mathbf{v}} \in \mathbb{Z} \text{ and } -2\lceil \sigma_{\ell} \rceil \le \widehat{\mathbf{v}} \le 2\lceil \sigma_{\ell} \rceil \right\}$$
$$\mathbf{V}_{\ell} = \frac{\widehat{\mathbf{V}}_{\ell}}{\sum_{j} \widehat{\mathbf{v}}_{j}}$$

 \Box The smoothed version of the j - th snapshot can be defined as follows:

$$\forall \ell = L1 \dots L2 \to \mathbf{X}_{(j,\ell)} = \mathbf{\Theta}_{(j,\ell)} * \mathbf{V}_{\ell},$$
$$\mathbf{X}_{j} = \{\mathbf{X}_{(j,L1)}, \dots, \mathbf{X}_{(j,\ell)}, \dots \mathbf{X}_{(j,L2)}\}$$

where L1 and L2 are the first and the last active regions in the j - th snapshot

Feature Extraction (examples)

□ Voxels belong to a unique anatomical region are smoothed as follows:

Learning: Cognitive Model

- The third key idea is training an efficient classifier by using an ensemble approach
- For each anatomical region, we use L1-SVM classifier.

Empirical Studies

Datasets

Title	ID	U	р	t	Х	Y	Ζ
Visual Object Recognition	DS105	71	8	121	79	95	79
Word and Object Processing	DS107	98	4	164	53	63	52
Multi-subject, multi-modal	DS117	171	2	210	64	61	33

U is the number of subject

Dp denotes the number of visual stimuli categories

It is the number of scans in unites of TRs (Time of Repetition)

□ X, Y, Z are the size of 3D images

Provided by www.openfmri.org

Correlation Analysis

Correlation Analysis

Voxel Level Feature Level

Word and Object Processing (DS107)

Multi-subject, multi-modal (DS117)

Multi-Region Neural Representation: A novel model for decoding visual stimuli in human brains

Classification Analysis

Table 1: Accuracy of binary predictors

Data Sets	SVM	Graph Net	Elastic Net	L1-Reg. SVM	Osher et al.	Proposed method
DS105: Objects vs. Scrambles	$71.65 {\pm} 0.97$	$81.27 {\pm} 0.59$	$83.06 {\pm} 0.36$	$85.29 {\pm} 0.49$	$90.82{\pm}1.23$	$94.32{\pm}0.16$
DS107: Words vs. Others	$82.89{\pm}1.02$	$78.03 {\pm} 0.87$	$88.62 {\pm} 0.52$	$86.14 {\pm} 0.91$	$90.21 {\pm} 0.83$	$92.04{\pm}0.09$
DS107: Consonants vs. Others	$67.84{\pm}0.82$	$83.01 {\pm} 0.56$	$82.82 {\pm} 0.37$	$85.69 {\pm} 0.69$	$84.54 {\pm} 0.99$	$96.73 {\pm} 0.19$
DS107: Objects vs. Others	$73.32{\pm}1.67$	$77.93 {\pm} 0.29$	84.22 ± 0.44	$83.32 {\pm} 0.41$	$95.62{\pm}0.83$	$93.07 {\pm} 0.27$
DS107: Scrambles vs. Others	$83.96 {\pm} 0.87$	$79.37 {\pm} 0.82$	$87.19 {\pm} 0.26$	$86.45 {\pm} 0.62$	$88.1 {\pm} 0.78$	$90.93{\pm}0.71$
DS117: Faces vs. Scrambles	81.25 ± 1.03	$85.19 {\pm} 0.56$	$85.46 {\pm} 0.29$	$86.61 {\pm} 0.61$	$96.81{\pm}0.79$	$96.31 {\pm} 0.92$
ALL: Faces vs. Others	$66.27 {\pm} 1.61$	$68.37 {\pm} 1.31$	$75.91 {\pm} 0.74$	$80.23 {\pm} 0.72$	$84.99 {\pm} 0.71$	$89.99{\pm}0.31$
ALL: Objects vs. Others	$75.61 {\pm} 0.57$	$78.37 {\pm} 0.71$	$76.79 {\pm} 0.94$	$80.14 {\pm} 0.47$	$79.23 {\pm} 0.25$	$92.44{\pm}0.92$
ALL: Scrambles vs. Others	$81.92 {\pm} 0.71$	81.08 ± 1.23	$84.18 {\pm} 0.42$	$88.23 {\pm} 0.81$	$90.5 {\pm} 0.73$	$95.39{\pm}0.18$

Table 2: Area Under the ROC Curve (AUC) of binary predictors

Data Sets	SVM	Graph Net	Elastic Net	L1-Reg. SVM	Osher et al.	Proposed method
DS105: Objects vs. Scrambles	$68.37 {\pm} 1.01$	$70.32 {\pm} 0.92$	82.22 ± 0.42	$80.91 {\pm} 0.21$	$88.54{\pm}0.71$	$93.25{\pm}0.92$
DS107: Words vs. Others	$80.76 {\pm} 0.91$	$77.91{\pm}1.03$	$86.35 {\pm} 0.39$	$84.23 {\pm} 0.57$	$87.61 {\pm} 0.62$	$91.86{\pm}0.17$
DS107: Consonants vs. Others	$63.84{\pm}1.45$	$81.21 {\pm} 0.33$	$80.63 {\pm} 0.61$	$84.41 {\pm} 0.92$	$81.54{\pm}0.31$	$94.03{\pm}0.37$
DS107: Objects vs. Others	$70.17 {\pm} 0.59$	$76.14 {\pm} 0.49$	$81.54 {\pm} 0.92$	$80.92 {\pm} 0.28$	$94.23{\pm}0.94$	$92.14{\pm}0.42$
DS107: Scrambles vs. Others	$80.73 {\pm} 0.92$	$77 {\pm} 1.01$	$85.79 {\pm} 0.42$	$83.14 {\pm} 0.47$	$82.23 {\pm} 0.38$	$87.05 {\pm} 0.37$
DS117: Faces vs. Scrambles	$79.36 {\pm} 0.33$	$83.71 {\pm} 0.81$	83.21 ± 1.23	$82.29 {\pm} 0.91$	$94.08 {\pm} 0.84$	$94.61{\pm}0.71$
ALL: Faces vs. Others	$61.91{\pm}1.2$	$65.04{\pm}0.99$	$74.9 {\pm} 0.61$	$78.14 {\pm} 0.83$	$83.89 {\pm} 0.28$	$91.05{\pm}0.12$
ALL: Objects vs. Others	$74.19 {\pm} 0.92$	$77.88 {\pm} 0.82$	$73.59 {\pm} 0.95$	$79.45 {\pm} 0.77$	$75.61{\pm}0.89$	$\textbf{89.24}{\pm}\textbf{0.69}$
ALL: Scrambles vs. Others	$79.81{\pm}1.01$	$80 {\pm} 0.49$	$82.53 {\pm} 0.83$	$88.14 {\pm} 0.91$	$88.93 {\pm} 0.71$	$92.09{\pm}0.28$

Classification Analysis

Table 1: Accuracy of binary predictors

Data Sets	SVM	Graph Net	Elastic Net	L1-Reg. SVM	Osher et al.	Proposed method
DS105: Objects vs. Scrambles	$71.65 {\pm} 0.97$	$81.27 {\pm} 0.59$	$83.06 {\pm} 0.36$	$85.29 {\pm} 0.49$	$90.82{\pm}1.23$	$94.32{\pm}0.16$
DS107: Words vs. Others	$82.89{\pm}1.02$	$78.03 {\pm} 0.87$	$88.62 {\pm} 0.52$	$86.14 {\pm} 0.91$	$90.21 {\pm} 0.83$	$92.04{\pm}0.09$
DS107: Consonants vs. Others	$67.84{\pm}0.82$	$83.01 {\pm} 0.56$	$82.82 {\pm} 0.37$	$85.69 {\pm} 0.69$	$84.54 {\pm} 0.99$	$96.73{\pm}0.19$
DS107: Objects vs. Others	$73.32{\pm}1.67$	$77.93 {\pm} 0.29$	84.22 ± 0.44	$83.32 {\pm} 0.41$	$95.62{\pm}0.83$	$93.07 {\pm} 0.27$
DS107: Scrambles vs. Others	$83.96 {\pm} 0.87$	$79.37 {\pm} 0.82$	$87.19 {\pm} 0.26$	$86.45 {\pm} 0.62$	$88.1 {\pm} 0.78$	$90.93{\pm}0.71$
DS117: Faces vs. Scrambles	81.25 ± 1.03	$85.19 {\pm} 0.56$	$85.46 {\pm} 0.29$	$86.61 {\pm} 0.61$	$96.81{\pm}0.79$	$96.31 {\pm} 0.92$
ALL: Faces vs. Others	$66.27 {\pm} 1.61$	$68.37 {\pm} 1.31$	$75.91{\pm}0.74$	$80.23 {\pm} 0.72$	$84.99 {\pm} 0.71$	$89.99{\pm}0.31$
ALL: Objects vs. Others	$75.61 {\pm} 0.57$	$78.37 {\pm} 0.71$	$76.79 {\pm} 0.94$	$80.14 {\pm} 0.47$	$79.23 {\pm} 0.25$	$92.44{\pm}0.92$
ALL: Scrambles vs. Others	$81.92 {\pm} 0.71$	81.08 ± 1.23	$84.18 {\pm} 0.42$	$88.23 {\pm} 0.81$	$90.5 {\pm} 0.73$	$95.39{\pm}0.18$

Table 2: Area Under the ROC Curve (AUC) of binary predictors

Data Sets	SVM	Graph Net	Elastic Net	L1-Reg. SVM	Osher et al.	Proposed method
DS105: Objects vs. Scrambles	$68.37 {\pm} 1.01$	$70.32 {\pm} 0.92$	82.22 ± 0.42	$80.91 {\pm} 0.21$	$88.54 {\pm} 0.71$	$93.25{\pm}0.92$
DS107: Words vs. Others	$80.76 {\pm} 0.91$	$77.91{\pm}1.03$	$86.35 {\pm} 0.39$	$84.23 {\pm} 0.57$	$87.61 {\pm} 0.62$	$91.86{\pm}0.17$
DS107: Consonants vs. Others	$63.84{\pm}1.45$	$81.21 {\pm} 0.33$	$80.63 {\pm} 0.61$	$84.41 {\pm} 0.92$	$81.54{\pm}0.31$	$94.03{\pm}0.37$
DS107: Objects vs. Others	$70.17 {\pm} 0.59$	$76.14 {\pm} 0.49$	$81.54 {\pm} 0.92$	$80.92 {\pm} 0.28$	$94.23{\pm}0.94$	$92.14{\pm}0.42$
DS107: Scrambles vs. Others	$80.73 {\pm} 0.92$	$77 {\pm} 1.01$	$85.79 {\pm} 0.42$	$83.14 {\pm} 0.47$	$82.23 {\pm} 0.38$	$87.05 {\pm} 0.37$
DS117: Faces vs. Scrambles	$79.36 {\pm} 0.33$	$83.71 {\pm} 0.81$	83.21 ± 1.23	$82.29 {\pm} 0.91$	$94.08 {\pm} 0.84$	$94.61{\pm}0.71$
ALL: Faces vs. Others	$61.91{\pm}1.2$	$65.04{\pm}0.99$	$74.9 {\pm} 0.61$	$78.14 {\pm} 0.83$	$83.89 {\pm} 0.28$	$91.05{\pm}0.12$
ALL: Objects vs. Others	$74.19 {\pm} 0.92$	$77.88 {\pm} 0.82$	$73.59 {\pm} 0.95$	$79.45 {\pm} 0.77$	$75.61{\pm}0.89$	$89.24{\pm}0.69$
ALL: Scrambles vs. Others	$79.81{\pm}1.01$	$80 {\pm} 0.49$	$82.53 {\pm} 0.83$	$88.14 {\pm} 0.91$	$88.93 {\pm} 0.71$	$92.09{\pm}0.28$

Parameters Analysis: σ_G for smoothing design matrix

 $\Box 0 < \sigma < 1$ can create design matrix, which is sensitive to small spikes.

 $\Box \sigma > 1$ can increase the level of smoothness that can remove some weak local maximums, especially in the eventrelated data sets.

Parameters Analysis: Normalization Objective Functions

 $\mathbf{T}_i = \arg\min(NMI(\widehat{\beta}_i, \mathbf{Ref}))$

Regions of Interests (ROIs) Analysis

Brain Regions

Future Works

Conclusion

This paper proposes Multi-Region Neural Representation as a novel feature space for decoding visual stimuli in the human brain.

Experimental studies on 4 visual categories (words, objects, consonants and nonsense photos) clearly show the superiority of our proposed method in comparison with state-of-the-art methods.

□ In future, we plan to apply the proposed method to different brain tasks such as risk, emotion and etc.

Thank You

Q & A

For more details, contact: myousefnezhad@nuaa.edu.cn myousefnezhad@outlook.com https://myousefnezhad.github.io