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fMRI Data 

•  Tracking the intensity over time gives us a time 
series. 

…………. 

1 2 T 

Voxels	>

𝜏

Blood Oxygen Level Dependent (BOLD) signals 

Snapshot

1. Selecting a set of effective snapshots
rather than using whole of the noisy and
sparse time series

2. Extracting robust features from the
selected snapshots

3. Improving the performance of the
generated cognitive model
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What	is	the	best	form	of	features	in	task-based	
fMRI	analysis?
Ø Original	Raw	Voxels
Ø Component	Based	Approach,	i.e.	PCA,	ICA
Ø Other	Feature	Selecting/Ranking	Approaches
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(b) Design matrix in the event-related experiment

Figure 1: Two examples of smoothed version of the design matrix. The blue lines show the original convolution
(di = Si ⇤H), the red dashed lines depict the smooth versions (�i = (Si ⇤H) ⇤G), and the green circles illustrate

the locations (S⇤
i ) of the detected snapshots ( b ).

Algorithm 1 The Snapshots Selection Algorithm

Input: fMRI time series F, time points (onsets) S,
HRF signal H, , Gaussian Parameter �G:

Output: Snapshots  , the sets of correlations b�:
Method:

1. Generating the design matrix D = S ⇤H.
2. Defining F = Db� + ".
3. Calculating b� by using (3.2).
4. Generating Gaussian kernel by (3.4).
5. Smoothing the design matrix by (3.5).
6. Finding locations of the snapshots by (3.8).

7. Calculating snapshots b by using (3.9).

be formulated by a linear model as follows:

(3.1) F = D(b�)| + "

where D 2 Rt⇥p denotes the design matrix, " is
the noise (error of estimation), b� 2 Rm⇥p denotes
the sets of correlations (estimated regressors) between
voxels. The design matrix can be denoted by D =
{d1,d2, . . . ,di, . . . ,dp}, and the sets of correlations can

be defined by b� = {b�1, b�2, . . . , b�i, . . . , b�p}. Here, di 2
Rt and b�i 2 Rm are the column of design matrix and
the set of correlations for i� th category, respectively. p
is also the number of all categories in the experiment F.
In fact, each category (independent tasks) contains a set
of homogeneous visual stimuli. In addition, the nonzero
voxels in b�i represents the location of all active voxels for
the i�th category [24]. As an example, imagine during a
unique session for recognizing visual stimuli, if a subject
watches 4 photos of cats and 3 photos of houses, then
the design matrix contains two columns; and there are
also two sets of correlations between voxels, i.e. one for
watching cats and another for watching houses. Indeed,
the final goal of this section is extracting 7 snapshots of
the brain image for the 7 stimuli in this example.

The design matrix can be classically calculated
by convolution of time samples (or onsets: S =
{S1,S2, . . . ,Si, . . . ,Sp}) and H as the Hemodynamic
Response Function (HRF) signal, di = Si ⇤ H =)
D = S⇤H [11, 24]. In addition, there is a wide range of

solutions for estimating b� values. This paper uses the
classical method Generalized Least Squares (GLS) [24]

for estimating the b� values where ⌃ is the covariance
matrix of the noise (V ar(") = ⌃�2 6= I�2):

(3.2) b� =
�
(D|⌃�1D)

�1
D|⌃�1F

�|

Each local maximum in di represents a location where
the level of using oxygen is so high. In other words,
the stimulus happens in that location. Since di mostly
contains small spikes (especially for event-related exper-
iments), it cannot be directly used for finding these local
maximums. Therefore, this paper employs a Gaussian
kernel for smoothing the di signal. Now, the interval bG
is defined as follows for generating the kernel:
(3.3)

bG =

⇢
exp

✓
�bg2

2�2
G

◆ ���� bg 2 Z and �2d�Ge  bg  2d�Ge
�

where �G > 0 denotes a positive real number; d.e is
the ceiling function; and Z denotes the set of integer
numbers. Gaussian kernel is also defined by normalizing
bG as follows:

(3.4) G =
bGP
j bgj

where
P

j bgj is the sum of all elements in the interval bG.
This paper defines the smoothed version of the design
matrix by applying the convolution of the Gaussian
kernel G and each column of the design matrix (di)
as follows:

(3.5) �i = di ⇤G = (Si ⇤H) ⇤G

0 20 40 60 80 100 120 140
Time points (onsets) in a column of the design matrix

-0.2

0

0.2

0.4

0.6

0.8

O
xy

g
e
n
 le

ve
l i

n
 t
h
e
 b

ra
in

(a) Design matrix in the block-design experiment

0 20 40 60 80 100 120 140
Time points (onsets) in a column of the design matrix

-0.05

0

0.05

0.1

0.15

O
xy

g
e

n
 le

ve
l i

n
 t

h
e
 b

ra
in

(b) Design matrix in the event-related experiment

Figure 1: Two examples of smoothed version of the design matrix. The blue lines show the original convolution
(di = Si ⇤H), the red dashed lines depict the smooth versions (�i = (Si ⇤H) ⇤G), and the green circles illustrate
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(di = Si ⇤H), the red dashed lines depict the smooth versions (�i = (Si ⇤H) ⇤G), and the green circles illustrate
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i ) of the detected snapshots ( b ).
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4. Generating Gaussian kernel by (3.4).
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Based	on	onsets,	we	have	two	types	of	design	matrix:	
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Multi-Region Neural Representation
o The proposed method includes three steps:

1. Snapshots Selection
2. Feature Extraction

2.1 Normalizing snapshots to standard space
2.2 Segmenting the snapshots in the form of anatomical regions
2.3 Removing noise in the level of ROIs.

3. Ensemble Learning

o The graphical pipeline of the proposed method:
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Snapshots Selection

o The first key idea: Neurological Priority
Which	time	point	is	better	for	ranking	3D	images?
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Definition of snapshots 
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Onsets	(time	points):	𝑺 = 𝑺𝟏,⋯ , 𝑺𝒊,⋯ , 𝑺𝒑

Design	Matrix:	𝑫 = 𝒅𝟏,⋯ , 𝒅𝒊,⋯ , 𝒅𝒑

Gaussian	Kernel:

Smoothed	Design	Matrix:

The	local	maximum	points:

The	set	of	snapshots	can	be	formulated	as	follows:		
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Figure 1: Two examples of smoothed version of the design matrix. The blue lines show the original convolution
(di = Si ⇤H), the red dashed lines depict the smooth versions (�i = (Si ⇤H) ⇤G), and the green circles illustrate

the locations (S⇤
i ) of the detected snapshots ( b ).

Algorithm 1 The Snapshots Selection Algorithm

Input: fMRI time series F, time points (onsets) S,
HRF signal H, , Gaussian Parameter �G:

Output: Snapshots  , the sets of correlations b�:
Method:

1. Generating the design matrix D = S ⇤H.
2. Defining F = Db� + ".
3. Calculating b� by using (3.2).
4. Generating Gaussian kernel by (3.4).
5. Smoothing the design matrix by (3.5).
6. Finding locations of the snapshots by (3.8).

7. Calculating snapshots b by using (3.9).

be formulated by a linear model as follows:

(3.1) F = D(b�)| + "

where D 2 Rt⇥p denotes the design matrix, " is
the noise (error of estimation), b� 2 Rm⇥p denotes
the sets of correlations (estimated regressors) between
voxels. The design matrix can be denoted by D =
{d1,d2, . . . ,di, . . . ,dp}, and the sets of correlations can

be defined by b� = {b�1, b�2, . . . , b�i, . . . , b�p}. Here, di 2
Rt and b�i 2 Rm are the column of design matrix and
the set of correlations for i� th category, respectively. p
is also the number of all categories in the experiment F.
In fact, each category (independent tasks) contains a set
of homogeneous visual stimuli. In addition, the nonzero
voxels in b�i represents the location of all active voxels for
the i�th category [24]. As an example, imagine during a
unique session for recognizing visual stimuli, if a subject
watches 4 photos of cats and 3 photos of houses, then
the design matrix contains two columns; and there are
also two sets of correlations between voxels, i.e. one for
watching cats and another for watching houses. Indeed,
the final goal of this section is extracting 7 snapshots of
the brain image for the 7 stimuli in this example.

The design matrix can be classically calculated
by convolution of time samples (or onsets: S =
{S1,S2, . . . ,Si, . . . ,Sp}) and H as the Hemodynamic
Response Function (HRF) signal, di = Si ⇤ H =)
D = S⇤H [11, 24]. In addition, there is a wide range of

solutions for estimating b� values. This paper uses the
classical method Generalized Least Squares (GLS) [24]

for estimating the b� values where ⌃ is the covariance
matrix of the noise (V ar(") = ⌃�2 6= I�2):

(3.2) b� =
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Each local maximum in di represents a location where
the level of using oxygen is so high. In other words,
the stimulus happens in that location. Since di mostly
contains small spikes (especially for event-related exper-
iments), it cannot be directly used for finding these local
maximums. Therefore, this paper employs a Gaussian
kernel for smoothing the di signal. Now, the interval bG
is defined as follows for generating the kernel:
(3.3)

bG =
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where �G > 0 denotes a positive real number; d.e is
the ceiling function; and Z denotes the set of integer
numbers. Gaussian kernel is also defined by normalizing
bG as follows:

(3.4) G =
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where
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j bgj is the sum of all elements in the interval bG.
This paper defines the smoothed version of the design
matrix by applying the convolution of the Gaussian
kernel G and each column of the design matrix (di)
as follows:

(3.5) �i = di ⇤G = (Si ⇤H) ⇤G
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Figure 1: Two examples of smoothed version of the design matrix. The blue lines show the original convolution
(di = Si ⇤H), the red dashed lines depict the smooth versions (�i = (Si ⇤H) ⇤G), and the green circles illustrate

the locations (S⇤
i ) of the detected snapshots ( b ).

Algorithm 1 The Snapshots Selection Algorithm

Input: fMRI time series F, time points (onsets) S,
HRF signal H, , Gaussian Parameter �G:

Output: Snapshots  , the sets of correlations b�:
Method:

1. Generating the design matrix D = S ⇤H.
2. Defining F = Db� + ".
3. Calculating b� by using (3.2).
4. Generating Gaussian kernel by (3.4).
5. Smoothing the design matrix by (3.5).
6. Finding locations of the snapshots by (3.8).

7. Calculating snapshots b by using (3.9).
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Figure 1: Two examples of smoothed version of the design matrix. The blue lines show the original convolution
(di = Si ⇤H), the red dashed lines depict the smooth versions (�i = (Si ⇤H) ⇤G), and the green circles illustrate

the locations (S⇤
i ) of the detected snapshots ( b ).

Algorithm 1 The Snapshots Selection Algorithm

Input: fMRI time series F, time points (onsets) S,
HRF signal H, , Gaussian Parameter �G:

Output: Snapshots  , the sets of correlations b�:
Method:

1. Generating the design matrix D = S ⇤H.
2. Defining F = Db� + ".
3. Calculating b� by using (3.2).
4. Generating Gaussian kernel by (3.4).
5. Smoothing the design matrix by (3.5).
6. Finding locations of the snapshots by (3.8).

7. Calculating snapshots b by using (3.9).
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where D 2 Rt⇥p denotes the design matrix, " is
the noise (error of estimation), b� 2 Rm⇥p denotes
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Rt and b�i 2 Rm are the column of design matrix and
the set of correlations for i� th category, respectively. p
is also the number of all categories in the experiment F.
In fact, each category (independent tasks) contains a set
of homogeneous visual stimuli. In addition, the nonzero
voxels in b�i represents the location of all active voxels for
the i�th category [24]. As an example, imagine during a
unique session for recognizing visual stimuli, if a subject
watches 4 photos of cats and 3 photos of houses, then
the design matrix contains two columns; and there are
also two sets of correlations between voxels, i.e. one for
watching cats and another for watching houses. Indeed,
the final goal of this section is extracting 7 snapshots of
the brain image for the 7 stimuli in this example.

The design matrix can be classically calculated
by convolution of time samples (or onsets: S =
{S1,S2, . . . ,Si, . . . ,Sp}) and H as the Hemodynamic
Response Function (HRF) signal, di = Si ⇤ H =)
D = S⇤H [11, 24]. In addition, there is a wide range of

solutions for estimating b� values. This paper uses the
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for estimating the b� values where ⌃ is the covariance
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Each local maximum in di represents a location where
the level of using oxygen is so high. In other words,
the stimulus happens in that location. Since di mostly
contains small spikes (especially for event-related exper-
iments), it cannot be directly used for finding these local
maximums. Therefore, this paper employs a Gaussian
kernel for smoothing the di signal. Now, the interval bG
is defined as follows for generating the kernel:
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where �G > 0 denotes a positive real number; d.e is
the ceiling function; and Z denotes the set of integer
numbers. Gaussian kernel is also defined by normalizing
bG as follows:

(3.4) G =
bGP
j bgj

where
P

j bgj is the sum of all elements in the interval bG.
This paper defines the smoothed version of the design
matrix by applying the convolution of the Gaussian
kernel G and each column of the design matrix (di)
as follows:

(3.5) �i = di ⇤G = (Si ⇤H) ⇤G(3.6) � = {�1,�2, . . . ,�p}

where �i = f (Si,H,G). Since the level of smoothness
in � is related to the positive value in (3.3), �G = 1
is heuristically defined to generate the optimum level
of smoothness in the design matrix. The general
assumption here is the 0 < �G < 1 can create design
matrix, which is sensitive to small spikes. Further,
�G > 1 can rapidly increase the level of smoothness,
and remove some weak local maximums, especially in
the event-related fMRI data sets. Figure 1 illustrates
two examples of the smoothed columns in the design
matrix. The local maximum points in the �i can be
calculated as follows:
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where S⇤
i ⇢ Si denotes the set of time points for all local

maximums in �i. The sets of maximum points for all
categories can be denoted as follows:

(3.8) S⇤ = {S⇤
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As mentioned before, the fMRI time series can be also
denoted by F| = {f|1 , f

|
2 , . . . , f

|
j , . . . , f

|
t }, where f|j 2

Rm is all voxels of fMRI data set in the j � th time
point. Now, the set of snapshots can be formulated as
follows:

(3.9) b = {f|j | f|j 2 F| and j 2 S⇤} =

{c 1,c 2, . . . ,c k, . . .c q} 2 Rm⇥q

where q is the number of snapshots in the brain image
F, and c k 2 Rm denotes the snapshot for k � th
stimulus. These selected snapshots are employed in next
section for extracting features of the neural activities.
Algorithm 1 illustrates the whole of procedure for
generating the snapshots from the time series F.

3.2 Feature Extraction In this paper, the feature
extraction is applied in three steps, i.e. normalizing
snapshots to standard space, segmenting the snapshots
in the form of automatically detected regions, and
removing noise by Gaussian smoothing in the level
of ROIs. As mentioned before, normalizing brain
image to the standard space can increase the time and
space complexities and decrease the robustness of MVP
techniques, especially in voxel-based methods [5]. On
the one hand, most of the previous studies [3, 4, 6,
11] preferred to use original data sets instead of the
standard version because of the mentioned problem. On
the other hand, this mapping can provide a normalized
view for combing homogeneous data sets. As a result,

it can significantly reduce the cost of brain studies and
rapidly increase the chance of understanding how the
brain works. Employing brain snapshots rather than
analyzing whole of data can solve the normalization
problem.

Normalization can be formulated as a mapping
problem. Indeed, brain snapshots are mapped from Rm

space to the standard space Rn by using a transforma-
tion matrix for each snapshot. There is also another
trick for improving the performance of this procedure.
Since the set b�i denotes the locations of all active vox-
els for the i� th category, it represents the brain mask
for that category and can be used for generating the
transform matrix related to all snapshots belong to that
category. For instance, in the example of the previous
section, instead of calculating 7 transform matrices for
7 stimuli, we calculate 2 matrices, including one for the
category of cats and the second one for the category of
houses. This mapping can be denoted as follows:

(3.10) Ti: b�i 2 Rm ! �i 2 Rn

where Ti 2 Rm⇥n denotes the transform matrix, �i =�
(b�i)|Ti

�|
is the set of correlations in the standard

space for i� th category. This paper utilizes the FLIRT
algorithm [25] for calculating the transform matrix,
which minimizes the following objective function:

(3.11) Ti = argmin(NMI(b�i,Ref))

where the function NMI denotes the Normalized Mu-
tual Information between two images [25], and Ref 2
Rn is the reference image in the standard space. This
image must contain the structures of the human brain,
i.e. white matter, gray matter, and CSF. These struc-
tures can improve the performance of mapping be-
tween the brain mask in the selected snapshot and
the general form of a standard brain. The perfor-
mance of (3.11) will be analyzed in the supplemen-
tary materials1. In addition, the sets of correla-
tions for all of categories in the standard space is de-
noted by � = {�1,�2, . . . ,�i, . . . ,�p} 2 Rn⇥p, and
the sets of transform matrices is defined by T =
{T1,T2, . . . ,Ti, . . . ,Tp}. Now, the Select function is
denoted as follows to find suitable transform matrix for
each snapshot:

�
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�
= Select(c j ,T,�) = {(Ti,�i) |

Ti 2 T, �i 2 � , c j is belonged to the i� th
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(3.12)

1Supplementary Materials is available:
sourceforge.net/projects/myousefnezhad/files/MRNR/
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Feature Extraction
o The second key idea is extracting the features of snapshots

based on an anatomical atlas for removing noise and
sparsity and improving performance of learning.

o Three steps:
ü Normalizing snapshots to standard space
ü Segmenting the snapshots in the form of anatomical regions
ü Removing noise in the level of ROIs.

Multi-Region Neural Representation: A novel model for decoding visual stimuli in human brains 12 of 28
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Step 1: Normalizing snapshots to standard space
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q For	reducing	the	time	complexity,	this	paper	uses	𝜷 values	for	each	category	of	
stimuli	to	find	a	transformation	matrix	for	mapping	snapshots	from	the	original	
space	to	the	standard	space.

q Transformation:

q Snapshot	Mappings:

q Applying	non-zero	correlations	to	snapshots:

where:

(3.6) � = {�1,�2, . . . ,�p}

where �i = f (Si,H,G). Since the level of smoothness
in � is related to the positive value in (3.3), �G = 1
is heuristically defined to generate the optimum level
of smoothness in the design matrix. The general
assumption here is the 0 < �G < 1 can create design
matrix, which is sensitive to small spikes. Further,
�G > 1 can rapidly increase the level of smoothness,
and remove some weak local maximums, especially in
the event-related fMRI data sets. Figure 1 illustrates
two examples of the smoothed columns in the design
matrix. The local maximum points in the �i can be
calculated as follows:

(3.7) S⇤
i =

⇢
arg
Si

�i

����
@�i
@Si

= 0 and
@2�i
@SiSi

> 0

�

where S⇤
i ⇢ Si denotes the set of time points for all local

maximums in �i. The sets of maximum points for all
categories can be denoted as follows:

(3.8) S⇤ = {S⇤
1,S

⇤
2, . . . ,S

⇤
i , . . . ,S

⇤
p}

As mentioned before, the fMRI time series can be also
denoted by F| = {f|1 , f

|
2 , . . . , f

|
j , . . . , f

|
t }, where f|j 2

Rm is all voxels of fMRI data set in the j � th time
point. Now, the set of snapshots can be formulated as
follows:

(3.9) b = {f|j | f|j 2 F| and j 2 S⇤} =

{c 1,c 2, . . . ,c k, . . .c q} 2 Rm⇥q

where q is the number of snapshots in the brain image
F, and c k 2 Rm denotes the snapshot for k � th
stimulus. These selected snapshots are employed in next
section for extracting features of the neural activities.
Algorithm 1 illustrates the whole of procedure for
generating the snapshots from the time series F.

3.2 Feature Extraction In this paper, the feature
extraction is applied in three steps, i.e. normalizing
snapshots to standard space, segmenting the snapshots
in the form of automatically detected regions, and
removing noise by Gaussian smoothing in the level
of ROIs. As mentioned before, normalizing brain
image to the standard space can increase the time and
space complexities and decrease the robustness of MVP
techniques, especially in voxel-based methods [5]. On
the one hand, most of the previous studies [3, 4, 6,
11] preferred to use original data sets instead of the
standard version because of the mentioned problem. On
the other hand, this mapping can provide a normalized
view for combing homogeneous data sets. As a result,

it can significantly reduce the cost of brain studies and
rapidly increase the chance of understanding how the
brain works. Employing brain snapshots rather than
analyzing whole of data can solve the normalization
problem.

Normalization can be formulated as a mapping
problem. Indeed, brain snapshots are mapped from Rm

space to the standard space Rn by using a transforma-
tion matrix for each snapshot. There is also another
trick for improving the performance of this procedure.
Since the set b�i denotes the locations of all active vox-
els for the i� th category, it represents the brain mask
for that category and can be used for generating the
transform matrix related to all snapshots belong to that
category. For instance, in the example of the previous
section, instead of calculating 7 transform matrices for
7 stimuli, we calculate 2 matrices, including one for the
category of cats and the second one for the category of
houses. This mapping can be denoted as follows:

(3.10) Ti: b�i 2 Rm ! �i 2 Rn

where Ti 2 Rm⇥n denotes the transform matrix, �i =�
(b�i)|Ti

�|
is the set of correlations in the standard

space for i� th category. This paper utilizes the FLIRT
algorithm [25] for calculating the transform matrix,
which minimizes the following objective function:

(3.11) Ti = argmin(NMI(b�i,Ref))

where the function NMI denotes the Normalized Mu-
tual Information between two images [25], and Ref 2
Rn is the reference image in the standard space. This
image must contain the structures of the human brain,
i.e. white matter, gray matter, and CSF. These struc-
tures can improve the performance of mapping be-
tween the brain mask in the selected snapshot and
the general form of a standard brain. The perfor-
mance of (3.11) will be analyzed in the supplemen-
tary materials1. In addition, the sets of correla-
tions for all of categories in the standard space is de-
noted by � = {�1,�2, . . . ,�i, . . . ,�p} 2 Rn⇥p, and
the sets of transform matrices is defined by T =
{T1,T2, . . . ,Ti, . . . ,Tp}. Now, the Select function is
denoted as follows to find suitable transform matrix for
each snapshot:

�
T⇤

j ,�
⇤
j

�
= Select(c j ,T,�) = {(Ti,�i) |

Ti 2 T, �i 2 � , c j is belonged to the i� th

category =) c j / �i / Ti}

(3.12)

1Supplementary Materials is available:
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(3.6) � = {�1,�2, . . . ,�p}

where �i = f (Si,H,G). Since the level of smoothness
in � is related to the positive value in (3.3), �G = 1
is heuristically defined to generate the optimum level
of smoothness in the design matrix. The general
assumption here is the 0 < �G < 1 can create design
matrix, which is sensitive to small spikes. Further,
�G > 1 can rapidly increase the level of smoothness,
and remove some weak local maximums, especially in
the event-related fMRI data sets. Figure 1 illustrates
two examples of the smoothed columns in the design
matrix. The local maximum points in the �i can be
calculated as follows:

(3.7) S⇤
i =

⇢
arg
Si

�i

����
@�i
@Si

= 0 and
@2�i
@SiSi

> 0

�

where S⇤
i ⇢ Si denotes the set of time points for all local

maximums in �i. The sets of maximum points for all
categories can be denoted as follows:

(3.8) S⇤ = {S⇤
1,S

⇤
2, . . . ,S

⇤
i , . . . ,S

⇤
p}

As mentioned before, the fMRI time series can be also
denoted by F| = {f|1 , f

|
2 , . . . , f

|
j , . . . , f

|
t }, where f|j 2

Rm is all voxels of fMRI data set in the j � th time
point. Now, the set of snapshots can be formulated as
follows:

(3.9) b = {f|j | f|j 2 F| and j 2 S⇤} =

{c 1,c 2, . . . ,c k, . . .c q} 2 Rm⇥q

where q is the number of snapshots in the brain image
F, and c k 2 Rm denotes the snapshot for k � th
stimulus. These selected snapshots are employed in next
section for extracting features of the neural activities.
Algorithm 1 illustrates the whole of procedure for
generating the snapshots from the time series F.

3.2 Feature Extraction In this paper, the feature
extraction is applied in three steps, i.e. normalizing
snapshots to standard space, segmenting the snapshots
in the form of automatically detected regions, and
removing noise by Gaussian smoothing in the level
of ROIs. As mentioned before, normalizing brain
image to the standard space can increase the time and
space complexities and decrease the robustness of MVP
techniques, especially in voxel-based methods [5]. On
the one hand, most of the previous studies [3, 4, 6,
11] preferred to use original data sets instead of the
standard version because of the mentioned problem. On
the other hand, this mapping can provide a normalized
view for combing homogeneous data sets. As a result,

it can significantly reduce the cost of brain studies and
rapidly increase the chance of understanding how the
brain works. Employing brain snapshots rather than
analyzing whole of data can solve the normalization
problem.

Normalization can be formulated as a mapping
problem. Indeed, brain snapshots are mapped from Rm

space to the standard space Rn by using a transforma-
tion matrix for each snapshot. There is also another
trick for improving the performance of this procedure.
Since the set b�i denotes the locations of all active vox-
els for the i� th category, it represents the brain mask
for that category and can be used for generating the
transform matrix related to all snapshots belong to that
category. For instance, in the example of the previous
section, instead of calculating 7 transform matrices for
7 stimuli, we calculate 2 matrices, including one for the
category of cats and the second one for the category of
houses. This mapping can be denoted as follows:

(3.10) Ti: b�i 2 Rm ! �i 2 Rn

where Ti 2 Rm⇥n denotes the transform matrix, �i =�
(b�i)|Ti

�|
is the set of correlations in the standard

space for i� th category. This paper utilizes the FLIRT
algorithm [25] for calculating the transform matrix,
which minimizes the following objective function:

(3.11) Ti = argmin(NMI(b�i,Ref))

where the function NMI denotes the Normalized Mu-
tual Information between two images [25], and Ref 2
Rn is the reference image in the standard space. This
image must contain the structures of the human brain,
i.e. white matter, gray matter, and CSF. These struc-
tures can improve the performance of mapping be-
tween the brain mask in the selected snapshot and
the general form of a standard brain. The perfor-
mance of (3.11) will be analyzed in the supplemen-
tary materials1. In addition, the sets of correla-
tions for all of categories in the standard space is de-
noted by � = {�1,�2, . . . ,�i, . . . ,�p} 2 Rn⇥p, and
the sets of transform matrices is defined by T =
{T1,T2, . . . ,Ti, . . . ,Tp}. Now, the Select function is
denoted as follows to find suitable transform matrix for
each snapshot:

�
T⇤

j ,�
⇤
j

�
= Select(c j ,T,�) = {(Ti,�i) |

Ti 2 T, �i 2 � , c j is belonged to the i� th

category =) c j / �i / Ti}

(3.12)
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Algorithm 2 The Feature Extraction Algorithm

Input: Snapshots  , correlations b�, Ref image,
Atlas A:
Output: Smoothed snapshots X:
Method:
1. For each b�i, calculate transform matrix by (3.11).

2. Mapping b j to standard space by T⇤
j and (3.13).

3. Detecting active voxels for each snapshot by (3.14).
4. Segmenting each snapshot by (3.16).
5. Finding active regions for each snapshot by (3.17).
6. Generating Gaussian kernel by (3.18).
7. Smoothing snapshots by (3.19).

where T⇤
j 2 Rm⇥n and �⇤

j 2 Rn are the transform ma-
trix and the set of correlations related to the j � th
snapshot, respectively. Based on (3.12), each normal-
ized snapshot in the standard space is defined as follows:

T⇤
j : b j 2 Rm !  j 2 Rn =)  j =

✓� b j

�|
T⇤

j

◆|
(3.13)

where  j 2 Rn is the j � th snapshot in the standard
space. Further, all snapshots in the standard space can
be defined by  = { 1, 2, . . . , j , . . . , q} 2 Rn⇥q. As
mentioned before, nonzero values in the correlation sets
depict the location of the active voxels. Based on (3.12),
this paper uses these correlation sets as weights for each
snapshot as follows:

(3.14) ⇥j =  j � �⇤
j

where � denotes Hadamard product, and ⇥j 2 Rn

is the j � th modified snapshot, where the values of
deactivated voxels (and also deactivated anatomical
regions) are zero in this snapshot. As the final product
of normalization procedure, the set of snapshots can be
denoted by ⇥ = {⇥1,⇥2, . . . ,⇥j , . . . ,⇥q}. Further,
each snapshot can be defined in the voxel level as
follows, where ✓kj is the k� th voxel of j � th snapshot:

(3.15) ⇥j =
⇥
✓1j , ✓

2
j , . . . , ✓

k
j , . . . , ✓

n
j

⇤

The next step is segmenting the snapshots in the
form of automatically detected regions. Now, consider
anatomical atlas A 2 Rn = {A1,A2, . . . ,A`, . . . ,AL},
where \L

`=1{A`} = ;, [L
`=1{A`} = A, and L is the

number of all regions in the anatomical atlas. Here, A`

denotes the set of voxel locations in the snapshots for
the ` � th anatomical region. A segmented snapshot
based on the `� th region can be denoted as follows:

(3.16) ⇥(j,`) = {✓kj | ✓kj 2 ⇥j and k 2 A`}

where ⇥(j,`) ⇢ ⇥j is the subset of voxels in the
snapshot ⇥j , which these voxels are belonged to the
the ` � th anatomical region. In addition, the sets of
all anatomical regions in the j � th snapshot can be
defined by ⇥j = {⇥(j,1) [ ⇥(j,2) [ · · · [ ⇥(j,`) [ · · · [
⇥(j,L)} =

⇥
✓1j , ✓

2
j , . . . , ✓

k
j , . . . , ✓

n
j

⇤
. The automatically

detected active regions can be also defined as follows:
(3.17)

⇥⇤
j =

⇢
⇥(j,`)|⇥(j,`) ⇢ ⇥j and

X

✓k
(j,`)

2⇥(j,`)

|✓k(j,`)| 6= 0

�

where
P

✓k
(j,`)

2⇥(j,`)
|✓k(j,`)| represents sum of all voxels

in the ⇥(j,`). Based on (3.17), active regions in the
j � th snapshot can be defined as the regions with
non-zero voxels because values of all deactivated voxels
are changed to zero by using (3.14). The last step is
removing noise by Gaussian smoothing in the level of
ROIs. As the first step, a Gaussian kernel for each
anatomical region can be defined as follows:

(3.18) �` =
N2

`

5N2
` logN`

bV` =

⇢
exp

✓
�bv2

2�`

◆ ���� bv 2 Z and �2d�`e  bv  2d�`e
�

V` =
cV`P
j bvj

where N` denotes the number of voxels in `� th region,
and

P
j bvj is sum of all values in the interval bV`.

Indeed, the level of smoothness is related to �`, which
is heuristically calculated for each region based on the
number of voxels in that region. As the second step, the
smoothed version of the j � th snapshot can be defined
as follows:

(3.19) 8` = L1 . . . L2 ! X(j,`) = ⇥(j,`) ⇤V`,

Xj = {X(j,L1), . . . ,X(j,`), . . .X(j,L2)}

where ⇥(j,`) 2 ⇥⇤
j is the ` � th active region of j � th

snapshot, and ⇤ denotes the convolution between the
active region and the Gaussian kernel related to that re-
gion. Further, L1 and L2 are the first and the last active
regions in the snapshot, where 1  L1  L2  L. Fig-
ure 2 demonstrates two examples of smoothed anatom-
ical regions in the voxel level. All smoothed snap-
shots can be defined by X = {X1,X2, . . . ,Xj , . . . ,Xq}.
Moreover, Algorithm 2 shows the whole of procedure for
extracting features.

3.3 Classification Method As a classical classifi-
cation method, Support Vector Machine (SVM) [8, 22]
decreases the operating risk and can find an optimized

(3.6) � = {�1,�2, . . . ,�p}

where �i = f (Si,H,G). Since the level of smoothness
in � is related to the positive value in (3.3), �G = 1
is heuristically defined to generate the optimum level
of smoothness in the design matrix. The general
assumption here is the 0 < �G < 1 can create design
matrix, which is sensitive to small spikes. Further,
�G > 1 can rapidly increase the level of smoothness,
and remove some weak local maximums, especially in
the event-related fMRI data sets. Figure 1 illustrates
two examples of the smoothed columns in the design
matrix. The local maximum points in the �i can be
calculated as follows:

(3.7) S⇤
i =

⇢
arg
Si

�i

����
@�i
@Si

= 0 and
@2�i
@SiSi

> 0

�

where S⇤
i ⇢ Si denotes the set of time points for all local

maximums in �i. The sets of maximum points for all
categories can be denoted as follows:

(3.8) S⇤ = {S⇤
1,S

⇤
2, . . . ,S

⇤
i , . . . ,S

⇤
p}

As mentioned before, the fMRI time series can be also
denoted by F| = {f|1 , f

|
2 , . . . , f

|
j , . . . , f

|
t }, where f|j 2

Rm is all voxels of fMRI data set in the j � th time
point. Now, the set of snapshots can be formulated as
follows:

(3.9) b = {f|j | f|j 2 F| and j 2 S⇤} =

{c 1,c 2, . . . ,c k, . . .c q} 2 Rm⇥q

where q is the number of snapshots in the brain image
F, and c k 2 Rm denotes the snapshot for k � th
stimulus. These selected snapshots are employed in next
section for extracting features of the neural activities.
Algorithm 1 illustrates the whole of procedure for
generating the snapshots from the time series F.

3.2 Feature Extraction In this paper, the feature
extraction is applied in three steps, i.e. normalizing
snapshots to standard space, segmenting the snapshots
in the form of automatically detected regions, and
removing noise by Gaussian smoothing in the level
of ROIs. As mentioned before, normalizing brain
image to the standard space can increase the time and
space complexities and decrease the robustness of MVP
techniques, especially in voxel-based methods [5]. On
the one hand, most of the previous studies [3, 4, 6,
11] preferred to use original data sets instead of the
standard version because of the mentioned problem. On
the other hand, this mapping can provide a normalized
view for combing homogeneous data sets. As a result,

it can significantly reduce the cost of brain studies and
rapidly increase the chance of understanding how the
brain works. Employing brain snapshots rather than
analyzing whole of data can solve the normalization
problem.

Normalization can be formulated as a mapping
problem. Indeed, brain snapshots are mapped from Rm

space to the standard space Rn by using a transforma-
tion matrix for each snapshot. There is also another
trick for improving the performance of this procedure.
Since the set b�i denotes the locations of all active vox-
els for the i� th category, it represents the brain mask
for that category and can be used for generating the
transform matrix related to all snapshots belong to that
category. For instance, in the example of the previous
section, instead of calculating 7 transform matrices for
7 stimuli, we calculate 2 matrices, including one for the
category of cats and the second one for the category of
houses. This mapping can be denoted as follows:

(3.10) Ti: b�i 2 Rm ! �i 2 Rn

where Ti 2 Rm⇥n denotes the transform matrix, �i =�
(b�i)|Ti

�|
is the set of correlations in the standard

space for i� th category. This paper utilizes the FLIRT
algorithm [25] for calculating the transform matrix,
which minimizes the following objective function:

(3.11) Ti = argmin(NMI(b�i,Ref))

where the function NMI denotes the Normalized Mu-
tual Information between two images [25], and Ref 2
Rn is the reference image in the standard space. This
image must contain the structures of the human brain,
i.e. white matter, gray matter, and CSF. These struc-
tures can improve the performance of mapping be-
tween the brain mask in the selected snapshot and
the general form of a standard brain. The perfor-
mance of (3.11) will be analyzed in the supplemen-
tary materials1. In addition, the sets of correla-
tions for all of categories in the standard space is de-
noted by � = {�1,�2, . . . ,�i, . . . ,�p} 2 Rn⇥p, and
the sets of transform matrices is defined by T =
{T1,T2, . . . ,Ti, . . . ,Tp}. Now, the Select function is
denoted as follows to find suitable transform matrix for
each snapshot:

�
T⇤

j ,�
⇤
j

�
= Select(c j ,T,�) = {(Ti,�i) |

Ti 2 T, �i 2 � , c j is belonged to the i� th

category =) c j / �i / Ti}

(3.12)

1Supplementary Materials is available:
sourceforge.net/projects/myousefnezhad/files/MRNR/

Algorithm 2 The Feature Extraction Algorithm

Input: Snapshots  , correlations b�, Ref image,
Atlas A:
Output: Smoothed snapshots X:
Method:
1. For each b�i, calculate transform matrix by (3.11).

2. Mapping b j to standard space by T⇤
j and (3.13).

3. Detecting active voxels for each snapshot by (3.14).
4. Segmenting each snapshot by (3.16).
5. Finding active regions for each snapshot by (3.17).
6. Generating Gaussian kernel by (3.18).
7. Smoothing snapshots by (3.19).

where T⇤
j 2 Rm⇥n and �⇤

j 2 Rn are the transform ma-
trix and the set of correlations related to the j � th
snapshot, respectively. Based on (3.12), each normal-
ized snapshot in the standard space is defined as follows:

T⇤
j : b j 2 Rm !  j 2 Rn =)  j =

✓� b j

�|
T⇤

j

◆|
(3.13)

where  j 2 Rn is the j � th snapshot in the standard
space. Further, all snapshots in the standard space can
be defined by  = { 1, 2, . . . , j , . . . , q} 2 Rn⇥q. As
mentioned before, nonzero values in the correlation sets
depict the location of the active voxels. Based on (3.12),
this paper uses these correlation sets as weights for each
snapshot as follows:

(3.14) ⇥j =  j � �⇤
j

where � denotes Hadamard product, and ⇥j 2 Rn

is the j � th modified snapshot, where the values of
deactivated voxels (and also deactivated anatomical
regions) are zero in this snapshot. As the final product
of normalization procedure, the set of snapshots can be
denoted by ⇥ = {⇥1,⇥2, . . . ,⇥j , . . . ,⇥q}. Further,
each snapshot can be defined in the voxel level as
follows, where ✓kj is the k� th voxel of j � th snapshot:

(3.15) ⇥j =
⇥
✓1j , ✓

2
j , . . . , ✓

k
j , . . . , ✓

n
j

⇤

The next step is segmenting the snapshots in the
form of automatically detected regions. Now, consider
anatomical atlas A 2 Rn = {A1,A2, . . . ,A`, . . . ,AL},
where \L

`=1{A`} = ;, [L
`=1{A`} = A, and L is the

number of all regions in the anatomical atlas. Here, A`

denotes the set of voxel locations in the snapshots for
the ` � th anatomical region. A segmented snapshot
based on the `� th region can be denoted as follows:

(3.16) ⇥(j,`) = {✓kj | ✓kj 2 ⇥j and k 2 A`}

where ⇥(j,`) ⇢ ⇥j is the subset of voxels in the
snapshot ⇥j , which these voxels are belonged to the
the ` � th anatomical region. In addition, the sets of
all anatomical regions in the j � th snapshot can be
defined by ⇥j = {⇥(j,1) [ ⇥(j,2) [ · · · [ ⇥(j,`) [ · · · [
⇥(j,L)} =

⇥
✓1j , ✓

2
j , . . . , ✓

k
j , . . . , ✓

n
j

⇤
. The automatically

detected active regions can be also defined as follows:
(3.17)

⇥⇤
j =

⇢
⇥(j,`)|⇥(j,`) ⇢ ⇥j and

X

✓k
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|✓k(j,`)| 6= 0
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where
P

✓k
(j,`)

2⇥(j,`)
|✓k(j,`)| represents sum of all voxels

in the ⇥(j,`). Based on (3.17), active regions in the
j � th snapshot can be defined as the regions with
non-zero voxels because values of all deactivated voxels
are changed to zero by using (3.14). The last step is
removing noise by Gaussian smoothing in the level of
ROIs. As the first step, a Gaussian kernel for each
anatomical region can be defined as follows:

(3.18) �` =
N2

`

5N2
` logN`

bV` =

⇢
exp

✓
�bv2

2�`
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�

V` =
cV`P
j bvj

where N` denotes the number of voxels in `� th region,
and

P
j bvj is sum of all values in the interval bV`.

Indeed, the level of smoothness is related to �`, which
is heuristically calculated for each region based on the
number of voxels in that region. As the second step, the
smoothed version of the j � th snapshot can be defined
as follows:

(3.19) 8` = L1 . . . L2 ! X(j,`) = ⇥(j,`) ⇤V`,

Xj = {X(j,L1), . . . ,X(j,`), . . .X(j,L2)}

where ⇥(j,`) 2 ⇥⇤
j is the ` � th active region of j � th

snapshot, and ⇤ denotes the convolution between the
active region and the Gaussian kernel related to that re-
gion. Further, L1 and L2 are the first and the last active
regions in the snapshot, where 1  L1  L2  L. Fig-
ure 2 demonstrates two examples of smoothed anatom-
ical regions in the voxel level. All smoothed snap-
shots can be defined by X = {X1,X2, . . . ,Xj , . . . ,Xq}.
Moreover, Algorithm 2 shows the whole of procedure for
extracting features.

3.3 Classification Method As a classical classifi-
cation method, Support Vector Machine (SVM) [8, 22]
decreases the operating risk and can find an optimized



Step 2: Segmenting the snapshots in the form of anatomical regions
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q The	basic	assumption	is	that	the	voxels	belong	to	an	anatomical	regions	must	
behave	in	unison	for	a	each	unique	task.	

q Anatomical	Atlas:		

q A	segmented	snapshot	based	on	the	𝒊 − 𝒕𝒉 region	can	be	denoted	as	follows:

q The	automatically	detected	active	regions	can	be	also	defined	as	follows:

Algorithm 2 The Feature Extraction Algorithm

Input: Snapshots  , correlations b�, Ref image,
Atlas A:
Output: Smoothed snapshots X:
Method:
1. For each b�i, calculate transform matrix by (3.11).

2. Mapping b j to standard space by T⇤
j and (3.13).

3. Detecting active voxels for each snapshot by (3.14).
4. Segmenting each snapshot by (3.16).
5. Finding active regions for each snapshot by (3.17).
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7. Smoothing snapshots by (3.19).
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where  j 2 Rn is the j � th snapshot in the standard
space. Further, all snapshots in the standard space can
be defined by  = { 1, 2, . . . , j , . . . , q} 2 Rn⇥q. As
mentioned before, nonzero values in the correlation sets
depict the location of the active voxels. Based on (3.12),
this paper uses these correlation sets as weights for each
snapshot as follows:

(3.14) ⇥j =  j � �⇤
j

where � denotes Hadamard product, and ⇥j 2 Rn

is the j � th modified snapshot, where the values of
deactivated voxels (and also deactivated anatomical
regions) are zero in this snapshot. As the final product
of normalization procedure, the set of snapshots can be
denoted by ⇥ = {⇥1,⇥2, . . . ,⇥j , . . . ,⇥q}. Further,
each snapshot can be defined in the voxel level as
follows, where ✓kj is the k� th voxel of j � th snapshot:
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The next step is segmenting the snapshots in the
form of automatically detected regions. Now, consider
anatomical atlas A 2 Rn = {A1,A2, . . . ,A`, . . . ,AL},
where \L

`=1{A`} = ;, [L
`=1{A`} = A, and L is the

number of all regions in the anatomical atlas. Here, A`

denotes the set of voxel locations in the snapshots for
the ` � th anatomical region. A segmented snapshot
based on the `� th region can be denoted as follows:
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snapshot ⇥j , which these voxels are belonged to the
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in the ⇥(j,`). Based on (3.17), active regions in the
j � th snapshot can be defined as the regions with
non-zero voxels because values of all deactivated voxels
are changed to zero by using (3.14). The last step is
removing noise by Gaussian smoothing in the level of
ROIs. As the first step, a Gaussian kernel for each
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where N` denotes the number of voxels in `� th region,
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P
j bvj is sum of all values in the interval bV`.

Indeed, the level of smoothness is related to �`, which
is heuristically calculated for each region based on the
number of voxels in that region. As the second step, the
smoothed version of the j � th snapshot can be defined
as follows:
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Xj = {X(j,L1), . . . ,X(j,`), . . .X(j,L2)}

where ⇥(j,`) 2 ⇥⇤
j is the ` � th active region of j � th

snapshot, and ⇤ denotes the convolution between the
active region and the Gaussian kernel related to that re-
gion. Further, L1 and L2 are the first and the last active
regions in the snapshot, where 1  L1  L2  L. Fig-
ure 2 demonstrates two examples of smoothed anatom-
ical regions in the voxel level. All smoothed snap-
shots can be defined by X = {X1,X2, . . . ,Xj , . . . ,Xq}.
Moreover, Algorithm 2 shows the whole of procedure for
extracting features.

3.3 Classification Method As a classical classifi-
cation method, Support Vector Machine (SVM) [8, 22]
decreases the operating risk and can find an optimized

Algorithm 2 The Feature Extraction Algorithm

Input: Snapshots  , correlations b�, Ref image,
Atlas A:
Output: Smoothed snapshots X:
Method:
1. For each b�i, calculate transform matrix by (3.11).

2. Mapping b j to standard space by T⇤
j and (3.13).

3. Detecting active voxels for each snapshot by (3.14).
4. Segmenting each snapshot by (3.16).
5. Finding active regions for each snapshot by (3.17).
6. Generating Gaussian kernel by (3.18).
7. Smoothing snapshots by (3.19).
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where  j 2 Rn is the j � th snapshot in the standard
space. Further, all snapshots in the standard space can
be defined by  = { 1, 2, . . . , j , . . . , q} 2 Rn⇥q. As
mentioned before, nonzero values in the correlation sets
depict the location of the active voxels. Based on (3.12),
this paper uses these correlation sets as weights for each
snapshot as follows:

(3.14) ⇥j =  j � �⇤
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where � denotes Hadamard product, and ⇥j 2 Rn

is the j � th modified snapshot, where the values of
deactivated voxels (and also deactivated anatomical
regions) are zero in this snapshot. As the final product
of normalization procedure, the set of snapshots can be
denoted by ⇥ = {⇥1,⇥2, . . . ,⇥j , . . . ,⇥q}. Further,
each snapshot can be defined in the voxel level as
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The next step is segmenting the snapshots in the
form of automatically detected regions. Now, consider
anatomical atlas A 2 Rn = {A1,A2, . . . ,A`, . . . ,AL},
where \L

`=1{A`} = ;, [L
`=1{A`} = A, and L is the

number of all regions in the anatomical atlas. Here, A`

denotes the set of voxel locations in the snapshots for
the ` � th anatomical region. A segmented snapshot
based on the `� th region can be denoted as follows:

(3.16) ⇥(j,`) = {✓kj | ✓kj 2 ⇥j and k 2 A`}

where ⇥(j,`) ⇢ ⇥j is the subset of voxels in the
snapshot ⇥j , which these voxels are belonged to the
the ` � th anatomical region. In addition, the sets of
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in the ⇥(j,`). Based on (3.17), active regions in the
j � th snapshot can be defined as the regions with
non-zero voxels because values of all deactivated voxels
are changed to zero by using (3.14). The last step is
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where N` denotes the number of voxels in `� th region,
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j bvj is sum of all values in the interval bV`.

Indeed, the level of smoothness is related to �`, which
is heuristically calculated for each region based on the
number of voxels in that region. As the second step, the
smoothed version of the j � th snapshot can be defined
as follows:
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Xj = {X(j,L1), . . . ,X(j,`), . . .X(j,L2)}

where ⇥(j,`) 2 ⇥⇤
j is the ` � th active region of j � th

snapshot, and ⇤ denotes the convolution between the
active region and the Gaussian kernel related to that re-
gion. Further, L1 and L2 are the first and the last active
regions in the snapshot, where 1  L1  L2  L. Fig-
ure 2 demonstrates two examples of smoothed anatom-
ical regions in the voxel level. All smoothed snap-
shots can be defined by X = {X1,X2, . . . ,Xj , . . . ,Xq}.
Moreover, Algorithm 2 shows the whole of procedure for
extracting features.

3.3 Classification Method As a classical classifi-
cation method, Support Vector Machine (SVM) [8, 22]
decreases the operating risk and can find an optimized

Algorithm 2 The Feature Extraction Algorithm

Input: Snapshots  , correlations b�, Ref image,
Atlas A:
Output: Smoothed snapshots X:
Method:
1. For each b�i, calculate transform matrix by (3.11).

2. Mapping b j to standard space by T⇤
j and (3.13).

3. Detecting active voxels for each snapshot by (3.14).
4. Segmenting each snapshot by (3.16).
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6. Generating Gaussian kernel by (3.18).
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where  j 2 Rn is the j � th snapshot in the standard
space. Further, all snapshots in the standard space can
be defined by  = { 1, 2, . . . , j , . . . , q} 2 Rn⇥q. As
mentioned before, nonzero values in the correlation sets
depict the location of the active voxels. Based on (3.12),
this paper uses these correlation sets as weights for each
snapshot as follows:

(3.14) ⇥j =  j � �⇤
j

where � denotes Hadamard product, and ⇥j 2 Rn

is the j � th modified snapshot, where the values of
deactivated voxels (and also deactivated anatomical
regions) are zero in this snapshot. As the final product
of normalization procedure, the set of snapshots can be
denoted by ⇥ = {⇥1,⇥2, . . . ,⇥j , . . . ,⇥q}. Further,
each snapshot can be defined in the voxel level as
follows, where ✓kj is the k� th voxel of j � th snapshot:
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The next step is segmenting the snapshots in the
form of automatically detected regions. Now, consider
anatomical atlas A 2 Rn = {A1,A2, . . . ,A`, . . . ,AL},
where \L

`=1{A`} = ;, [L
`=1{A`} = A, and L is the

number of all regions in the anatomical atlas. Here, A`

denotes the set of voxel locations in the snapshots for
the ` � th anatomical region. A segmented snapshot
based on the `� th region can be denoted as follows:

(3.16) ⇥(j,`) = {✓kj | ✓kj 2 ⇥j and k 2 A`}

where ⇥(j,`) ⇢ ⇥j is the subset of voxels in the
snapshot ⇥j , which these voxels are belonged to the
the ` � th anatomical region. In addition, the sets of
all anatomical regions in the j � th snapshot can be
defined by ⇥j = {⇥(j,1) [ ⇥(j,2) [ · · · [ ⇥(j,`) [ · · · [
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⇥
✓1j , ✓

2
j , . . . , ✓

k
j , . . . , ✓

n
j

⇤
. The automatically

detected active regions can be also defined as follows:
(3.17)

⇥⇤
j =

⇢
⇥(j,`)|⇥(j,`) ⇢ ⇥j and

X

✓k
(j,`)

2⇥(j,`)

|✓k(j,`)| 6= 0

�

where
P

✓k
(j,`)

2⇥(j,`)
|✓k(j,`)| represents sum of all voxels

in the ⇥(j,`). Based on (3.17), active regions in the
j � th snapshot can be defined as the regions with
non-zero voxels because values of all deactivated voxels
are changed to zero by using (3.14). The last step is
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where N` denotes the number of voxels in `� th region,
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j bvj is sum of all values in the interval bV`.

Indeed, the level of smoothness is related to �`, which
is heuristically calculated for each region based on the
number of voxels in that region. As the second step, the
smoothed version of the j � th snapshot can be defined
as follows:

(3.19) 8` = L1 . . . L2 ! X(j,`) = ⇥(j,`) ⇤V`,

Xj = {X(j,L1), . . . ,X(j,`), . . .X(j,L2)}

where ⇥(j,`) 2 ⇥⇤
j is the ` � th active region of j � th

snapshot, and ⇤ denotes the convolution between the
active region and the Gaussian kernel related to that re-
gion. Further, L1 and L2 are the first and the last active
regions in the snapshot, where 1  L1  L2  L. Fig-
ure 2 demonstrates two examples of smoothed anatom-
ical regions in the voxel level. All smoothed snap-
shots can be defined by X = {X1,X2, . . . ,Xj , . . . ,Xq}.
Moreover, Algorithm 2 shows the whole of procedure for
extracting features.

3.3 Classification Method As a classical classifi-
cation method, Support Vector Machine (SVM) [8, 22]
decreases the operating risk and can find an optimized

Algorithm 2 The Feature Extraction Algorithm

Input: Snapshots  , correlations b�, Ref image,
Atlas A:
Output: Smoothed snapshots X:
Method:
1. For each b�i, calculate transform matrix by (3.11).

2. Mapping b j to standard space by T⇤
j and (3.13).

3. Detecting active voxels for each snapshot by (3.14).
4. Segmenting each snapshot by (3.16).
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ized snapshot in the standard space is defined as follows:
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where  j 2 Rn is the j � th snapshot in the standard
space. Further, all snapshots in the standard space can
be defined by  = { 1, 2, . . . , j , . . . , q} 2 Rn⇥q. As
mentioned before, nonzero values in the correlation sets
depict the location of the active voxels. Based on (3.12),
this paper uses these correlation sets as weights for each
snapshot as follows:

(3.14) ⇥j =  j � �⇤
j

where � denotes Hadamard product, and ⇥j 2 Rn

is the j � th modified snapshot, where the values of
deactivated voxels (and also deactivated anatomical
regions) are zero in this snapshot. As the final product
of normalization procedure, the set of snapshots can be
denoted by ⇥ = {⇥1,⇥2, . . . ,⇥j , . . . ,⇥q}. Further,
each snapshot can be defined in the voxel level as
follows, where ✓kj is the k� th voxel of j � th snapshot:
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The next step is segmenting the snapshots in the
form of automatically detected regions. Now, consider
anatomical atlas A 2 Rn = {A1,A2, . . . ,A`, . . . ,AL},
where \L

`=1{A`} = ;, [L
`=1{A`} = A, and L is the

number of all regions in the anatomical atlas. Here, A`

denotes the set of voxel locations in the snapshots for
the ` � th anatomical region. A segmented snapshot
based on the `� th region can be denoted as follows:

(3.16) ⇥(j,`) = {✓kj | ✓kj 2 ⇥j and k 2 A`}

where ⇥(j,`) ⇢ ⇥j is the subset of voxels in the
snapshot ⇥j , which these voxels are belonged to the
the ` � th anatomical region. In addition, the sets of
all anatomical regions in the j � th snapshot can be
defined by ⇥j = {⇥(j,1) [ ⇥(j,2) [ · · · [ ⇥(j,`) [ · · · [
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in the ⇥(j,`). Based on (3.17), active regions in the
j � th snapshot can be defined as the regions with
non-zero voxels because values of all deactivated voxels
are changed to zero by using (3.14). The last step is
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ROIs. As the first step, a Gaussian kernel for each
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Indeed, the level of smoothness is related to �`, which
is heuristically calculated for each region based on the
number of voxels in that region. As the second step, the
smoothed version of the j � th snapshot can be defined
as follows:
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Xj = {X(j,L1), . . . ,X(j,`), . . .X(j,L2)}

where ⇥(j,`) 2 ⇥⇤
j is the ` � th active region of j � th

snapshot, and ⇤ denotes the convolution between the
active region and the Gaussian kernel related to that re-
gion. Further, L1 and L2 are the first and the last active
regions in the snapshot, where 1  L1  L2  L. Fig-
ure 2 demonstrates two examples of smoothed anatom-
ical regions in the voxel level. All smoothed snap-
shots can be defined by X = {X1,X2, . . . ,Xj , . . . ,Xq}.
Moreover, Algorithm 2 shows the whole of procedure for
extracting features.

3.3 Classification Method As a classical classifi-
cation method, Support Vector Machine (SVM) [8, 22]
decreases the operating risk and can find an optimized
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q This	paper	smooths	voxels	belong	to	each	anatomical	region.

q A	Gaussian	kernel	for	each	anatomical	region	can	be	defined	as	follows:

q The	smoothed	version	of	the	𝒋 − 𝒕𝒉 snapshot	can	be	defined	as	follows:

where	L1	and	L2	are	the	first	and	the	last	active	regions	in	the	𝒋 − 𝒕𝒉	 snapshot
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where  j 2 Rn is the j � th snapshot in the standard
space. Further, all snapshots in the standard space can
be defined by  = { 1, 2, . . . , j , . . . , q} 2 Rn⇥q. As
mentioned before, nonzero values in the correlation sets
depict the location of the active voxels. Based on (3.12),
this paper uses these correlation sets as weights for each
snapshot as follows:

(3.14) ⇥j =  j � �⇤
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where � denotes Hadamard product, and ⇥j 2 Rn

is the j � th modified snapshot, where the values of
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regions) are zero in this snapshot. As the final product
of normalization procedure, the set of snapshots can be
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The next step is segmenting the snapshots in the
form of automatically detected regions. Now, consider
anatomical atlas A 2 Rn = {A1,A2, . . . ,A`, . . . ,AL},
where \L
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denotes the set of voxel locations in the snapshots for
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based on the `� th region can be denoted as follows:
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where ⇥(j,`) ⇢ ⇥j is the subset of voxels in the
snapshot ⇥j , which these voxels are belonged to the
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j � th snapshot can be defined as the regions with
non-zero voxels because values of all deactivated voxels
are changed to zero by using (3.14). The last step is
removing noise by Gaussian smoothing in the level of
ROIs. As the first step, a Gaussian kernel for each
anatomical region can be defined as follows:
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where N` denotes the number of voxels in `� th region,
and

P
j bvj is sum of all values in the interval bV`.

Indeed, the level of smoothness is related to �`, which
is heuristically calculated for each region based on the
number of voxels in that region. As the second step, the
smoothed version of the j � th snapshot can be defined
as follows:

(3.19) 8` = L1 . . . L2 ! X(j,`) = ⇥(j,`) ⇤V`,

Xj = {X(j,L1), . . . ,X(j,`), . . .X(j,L2)}

where ⇥(j,`) 2 ⇥⇤
j is the ` � th active region of j � th

snapshot, and ⇤ denotes the convolution between the
active region and the Gaussian kernel related to that re-
gion. Further, L1 and L2 are the first and the last active
regions in the snapshot, where 1  L1  L2  L. Fig-
ure 2 demonstrates two examples of smoothed anatom-
ical regions in the voxel level. All smoothed snap-
shots can be defined by X = {X1,X2, . . . ,Xj , . . . ,Xq}.
Moreover, Algorithm 2 shows the whole of procedure for
extracting features.

3.3 Classification Method As a classical classifi-
cation method, Support Vector Machine (SVM) [8, 22]
decreases the operating risk and can find an optimized
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Algorithm 2 The Feature Extraction Algorithm

Input: Snapshots  , correlations b�, Ref image,
Atlas A:
Output: Smoothed snapshots X:
Method:
1. For each b�i, calculate transform matrix by (3.11).

2. Mapping b j to standard space by T⇤
j and (3.13).

3. Detecting active voxels for each snapshot by (3.14).
4. Segmenting each snapshot by (3.16).
5. Finding active regions for each snapshot by (3.17).
6. Generating Gaussian kernel by (3.18).
7. Smoothing snapshots by (3.19).

where T⇤
j 2 Rm⇥n and �⇤

j 2 Rn are the transform ma-
trix and the set of correlations related to the j � th
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where  j 2 Rn is the j � th snapshot in the standard
space. Further, all snapshots in the standard space can
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where � denotes Hadamard product, and ⇥j 2 Rn

is the j � th modified snapshot, where the values of
deactivated voxels (and also deactivated anatomical
regions) are zero in this snapshot. As the final product
of normalization procedure, the set of snapshots can be
denoted by ⇥ = {⇥1,⇥2, . . . ,⇥j , . . . ,⇥q}. Further,
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The next step is segmenting the snapshots in the
form of automatically detected regions. Now, consider
anatomical atlas A 2 Rn = {A1,A2, . . . ,A`, . . . ,AL},
where \L
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number of all regions in the anatomical atlas. Here, A`

denotes the set of voxel locations in the snapshots for
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based on the `� th region can be denoted as follows:
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in the ⇥(j,`). Based on (3.17), active regions in the
j � th snapshot can be defined as the regions with
non-zero voxels because values of all deactivated voxels
are changed to zero by using (3.14). The last step is
removing noise by Gaussian smoothing in the level of
ROIs. As the first step, a Gaussian kernel for each
anatomical region can be defined as follows:
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where N` denotes the number of voxels in `� th region,
and

P
j bvj is sum of all values in the interval bV`.

Indeed, the level of smoothness is related to �`, which
is heuristically calculated for each region based on the
number of voxels in that region. As the second step, the
smoothed version of the j � th snapshot can be defined
as follows:

(3.19) 8` = L1 . . . L2 ! X(j,`) = ⇥(j,`) ⇤V`,

Xj = {X(j,L1), . . . ,X(j,`), . . .X(j,L2)}

where ⇥(j,`) 2 ⇥⇤
j is the ` � th active region of j � th

snapshot, and ⇤ denotes the convolution between the
active region and the Gaussian kernel related to that re-
gion. Further, L1 and L2 are the first and the last active
regions in the snapshot, where 1  L1  L2  L. Fig-
ure 2 demonstrates two examples of smoothed anatom-
ical regions in the voxel level. All smoothed snap-
shots can be defined by X = {X1,X2, . . . ,Xj , . . . ,Xq}.
Moreover, Algorithm 2 shows the whole of procedure for
extracting features.

3.3 Classification Method As a classical classifi-
cation method, Support Vector Machine (SVM) [8, 22]
decreases the operating risk and can find an optimized



Feature Extraction (examples) 

Multi-Region Neural Representation: A novel model for decoding visual stimuli in human brains 16 of 28

q Voxels	belong	to	a	unique	anatomical	region	are	smoothed	as	follows:	
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o The third key idea is training an efficient classifier by
using an ensemble approach

o For each anatomical region, we use L1-SVM classifier.
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Figure 2: Two examples of smoothed anatomical regions (X(j,`)) in the voxel level. Blue lines are the original
data, and red lines depict the smoothed values.

solution by maximizing the margin of error. As a result,
it can mostly generate better performance in compar-
ison with other methods, especially for binary classifi-
cation problems. Therefore, SVM is generally used in
the wide range of studies for creating predictive models
[4, 3, 6, 11]. The final goal of this section is employ-
ing the L1-regularization SVM [8] method for creating
binary classification at the ROIs level, and then com-
bining these classifiers by using the Bagging algorithm
[9, 10] for generating the MVP final predictive model.

As mentioned before, fMRI time series for a subject
can be denoted by F. Since fMRI experiment is mostly
multi-subject, this paper denotes Fu,= 1:U as fMRI
time series (sessions) for all subjects, where U is the

number of subjects. In addition, ⌧ =
PU

u=1 qu is
defined as the number of all snapshots in a unique
fMRI experiment. Here qu is the number of snapshots
for u � th subject. Further, the original ground truth
(the title of stimuli such that cats, houses, etc.) for
all snapshots is denoted by Y = {y1, y2, . . . , yj , . . . y⌧},
where yj denotes the ground truth for j � th snapshot.
Since this paper uses a one-versus-all strategy, we can
consider that yj 2 {�1,+1}. This paper applies
following objective function on automatically detected
active regions as the L1-regularization SVM method for
creating binary classification in the level of ROIs [3, 8]:
(3.20)

⌘`: min
W`

C
⌧X

j=1

max(0, 1� yjX(j,`)W(j,`)) + kW`k1

where C > 0 is a real positive number, X(j,`) and yj
denote the voxel values of ` � th region and the class
label of j � th snapshot, respectively. Further, W` =
[W(1,`),W(2,`), . . . ,W(j,`), . . . ,W(⌧,`)] is the generated
weights for predicting MVP model based on the ` � th
active region. The classifier for ` � th region is also
denoted by ⌘`, where all of these classifiers can be
defined by ⌘ = {⌘L1, . . . , ⌘`, . . . ⌘L2}. The final step

Algorithm 3 The Proposed Method by using (LOO)

Input: fMRI time series Fu, u = 1:U , Onsets Su, u =
1:U , HRF signal H, Gaussian Parameter �G (default
�G = 1):
Output: MVP performance (ACC,AUC)
Method:
1. Foreach Subject Fu :
2. Create train set FTr = {Fj |j = 1:U, j 6= u}.
3. Extract snapshots of FTr by using Algorithm 1.
4. Generate features of FTr by using Algorithm 2.
5. Train binary classifiers ⌘ by using FTr and (3.20).
6. Generate final predictor (⌘final) by using Bagging.
7. Consider Fu as test set.
8. Extract snapshots for Fu by using Algorithm 1.
9. Generate features for Fu by using Algorithm 2.
10. Apply test set on the final predictor (⌘final).
11. Calculate performance of Fu (ACCi, AUCi) [10].
12. End foreach
13. Accuracy: [10]: ACC =

PU
i=1 ACCi

�
U .

14. AUC [10]: AUC =
PU

i=1 AUCi

�
U .

in the proposed method is combining all classifiers (⌘)
by Bagging [9] algorithm for generating the MVP final
predictive model. Indeed, Bagging method uses the
average of predicted results in (3.20) for generating the

final result (⌘final =
PL2

`=L1 ⌘`) [9, 10]. Algorithm 3
shows the whole of procedure in the proposed method
by using Leave-One-Out (LOO) cross-validation in the
subject level.

4 Experiments

4.1 Data Sets This paper utilizes three data sets,
shared by openfmri.org, for running empirical stud-
ies. As the first data set, ‘Visual Object Recognition’
(DS105) includes U = 71 subjects. It also contains
p = 8 categories of visual stimuli, i.e. gray-scale images
of faces, houses, cats, bottles, scissors, shoes, chairs,
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Table 2: The data sets.

Title ID U p t X Y Z Scanner TR TE FA
Visual Object Recognition DS105 71 8 121 79 95 79 General Elect. 3 Tesla 2500 30 90
Word and Object Processing DS107 98 4 164 53 63 52 Siemens 3 Tesla 2000 28 90
Multi-subject, multi-modal DS117 171 2 210 64 61 33 Siemens 3 Tesla 2000 30 78

U is the number of subject; p denotes the number of visual stimuli categories; t is the number of scans in unites of TRs

(Time of Repetition); X, Y, Z are the size of 3D images; TR is Time of Repetition in millisecond; TE denotes Echo Time

in millisecond; FA is the flip angle. Please see openfmri.org for more information.

(3.11) on DS105, DS107, and DS117 data sets is ana-
lyzed in Figure 1.D by using di↵erent distance metrics,
i.e. Woods function (W), Correlation Ratio (CR), Joint
Entropy (JE), Mutual Information (MI), and Normal-
ized Mutual Information (NMI) [2]. As depicted in this
figure, the NMI generated better results in comparison
with other metrics.

2.2 Regions of Interest (ROIs) Analysis The
goal of fMRI studies is a better understanding of the
brain’s physiology. As mentioned before, the proposed
method provides an opportunity for neuroscientists to
ask this question: what is the e↵ect of a stimulus on
each of the anatomical regions rather than just study
the fluctuation of voxels in the manually selected ROIs.
This section introduces an approach to use the trained
classifiers as a biomarker for visualizing and analyzing
the e↵ects of di↵erent visual stimuli on each of anatom-
ical region. Since the proposed method used (3.20) to
create a unique binary classifier for each anatomical re-
gion (A`), each binary classifier (⌘`) depicts the neural
activities for an individual region. The whole of proce-
dure for calculating the biomarker is so simple. Firstly,
the weights (W(j,`)) belong to the region A` and the
category of visual stimuli �i are selected, then the aver-
age of these weights are calculated, and finally this aver-
age will be normalized between 0 and 1 as the biomarker
(BIO(i,`)) of the region A` and the category �i. The
general assumption is that for each relevant stimulus
the estimated biomarker must be near to 1, and also
for each irrelevant stimulus the biomarker is near to 0.
As depicted in Figure 2, these biomarkers are calculated
for the ROIs, which are introduced in [3] for decoding
visual stimuli. In this figure, the X-axis is the ROIs,
i.e. Insular Cortex (IC), Triangular part of the Inferior
Frontal Gyrus (tIFG), Inferior Parietal Cortex (IPC),
Cerebrospinal Fluid (CSF), Cerebellum (CB), Middle
Frontal Gyrus (MFG), Middle Occipital Gyrus (MOG),
Medial Superior Frontal Gyrus (mSFG), Supramarginal
Gyrus (SMG), Inferior Occipital Gyrus (IOG), Superior
Occipital Gyrus (SOG), Superior Frontal Gyrus (SFG),
Superior Parietal Cortex (SPC), Precuneus (PC), Mid-

dle Temporal Gyrus (MTG), Superior Temporal Gyrus
(STG), Angular Gyrus (AG), and Middle Cingulate
Gyrus (MCG). In addition, these results are generated
by using one-versus-all strategy on combined version of
all data sets, i.e. DS105, DS107, DS117. As depicted in
this figure, the di↵erent categories generated distinctive
patterns in these ROIs. These patterns can be used by
neuroscientists to study the human brains.
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Table 1: Accuracy of binary predictors

Data Sets SVM Graph Net Elastic Net L1-Reg. SVM Osher et al. Proposed method
DS105: Objects vs. Scrambles 71.65±0.97 81.27±0.59 83.06±0.36 85.29±0.49 90.82±1.23 94.32±0.16
DS107: Words vs. Others 82.89±1.02 78.03±0.87 88.62±0.52 86.14±0.91 90.21±0.83 92.04±0.09
DS107: Consonants vs. Others 67.84±0.82 83.01±0.56 82.82±0.37 85.69±0.69 84.54±0.99 96.73±0.19
DS107: Objects vs. Others 73.32±1.67 77.93±0.29 84.22±0.44 83.32±0.41 95.62±0.83 93.07±0.27
DS107: Scrambles vs. Others 83.96±0.87 79.37±0.82 87.19±0.26 86.45±0.62 88.1±0.78 90.93±0.71
DS117: Faces vs. Scrambles 81.25±1.03 85.19±0.56 85.46±0.29 86.61±0.61 96.81±0.79 96.31±0.92
ALL: Faces vs. Others 66.27±1.61 68.37±1.31 75.91±0.74 80.23±0.72 84.99±0.71 89.99±0.31
ALL: Objects vs. Others 75.61±0.57 78.37±0.71 76.79±0.94 80.14±0.47 79.23±0.25 92.44±0.92
ALL: Scrambles vs. Others 81.92±0.71 81.08±1.23 84.18±0.42 88.23±0.81 90.5±0.73 95.39±0.18

Table 2: Area Under the ROC Curve (AUC) of binary predictors

Data Sets SVM Graph Net Elastic Net L1-Reg. SVM Osher et al. Proposed method
DS105: Objects vs. Scrambles 68.37±1.01 70.32±0.92 82.22±0.42 80.91±0.21 88.54±0.71 93.25±0.92
DS107: Words vs. Others 80.76±0.91 77.91±1.03 86.35±0.39 84.23±0.57 87.61±0.62 91.86±0.17
DS107: Consonants vs. Others 63.84±1.45 81.21±0.33 80.63±0.61 84.41±0.92 81.54±0.31 94.03±0.37
DS107: Objects vs. Others 70.17±0.59 76.14±0.49 81.54±0.92 80.92±0.28 94.23±0.94 92.14±0.42
DS107: Scrambles vs. Others 80.73±0.92 77±1.01 85.79±0.42 83.14±0.47 82.23±0.38 87.05±0.37
DS117: Faces vs. Scrambles 79.36±0.33 83.71±0.81 83.21±1.23 82.29±0.91 94.08±0.84 94.61±0.71
ALL: Faces vs. Others 61.91±1.2 65.04±0.99 74.9±0.61 78.14±0.83 83.89±0.28 91.05±0.12
ALL: Objects vs. Others 74.19±0.92 77.88±0.82 73.59±0.95 79.45±0.77 75.61±0.89 89.24±0.69
ALL: Scrambles vs. Others 79.81±1.01 80±0.49 82.53±0.83 88.14±0.91 88.93±0.71 92.09±0.28

(A) (B)

(C) (D) (E) (F)

Figure 3: Correlation Matrix: for Visual Object Recog-
nition (DS105) data set (A) in the voxel level, (B) fea-
ture level, for Word and Object Processing (DS107)
data set (C) in the voxel level, (D) feature level, and
for multi-subject, multi-modal human neuroimaging
dataset (DS117) (E) in the voxel level, (F) feature level.

and scrambles (nonsense patterns). This data set is an-
alyzed in high-level visual stimuli as the binary predic-
tor, by considering all categories except nonsense photos
(scramble) as objects. Please see [5, 6, 11, 14, 26] for
more information. As the second data set, ‘Word and

Object Processing’ (DS107) includes U = 98 subjects.
It contains p = 4 categories of visual stimuli, i.e. words,
objects, scrambles, consonants. Please see [27] for more
information. As the last data set, ‘Multi-subject, multi-
modal human neuroimaging dataset’ (DS117) includes
MEG and fMRI images for U = 171 subjects. This
paper just uses the fMRI images of this data set. It
also contains p = 2 categories of visual stimuli, i.e.
human faces, and scrambles. Please see [28] for more
information. These data sets are separately prepro-
cessed by SPM 12 (6685) (www.fil.ion.ucl.ac.uk/spm/),
i.e. slice timing, realignment, normalization, smooth-
ing. This paper employs the Montreal Neurological In-
stitute (MNI) 152 T1 1mm as the reference image (Ref)
in (3.11) for mapping the extracted snapshots to the

standard space ( b i !  i). The size of this image in
3D scale is X = 182, Y = 218, Z = 182. Moreover, the
Talairach Atlas [29] (including L = 1105 regions) in the
standard space is used in (3.17) for extracting features.
Further, all of algorithms are implemented in the MAT-
LAB R2016b (9.1) on a PC with certain specifications2

by authors in order to generate experimental results.

4.2 Correlation Analysis Figure 3 A, C, and E
respectively demonstrate correlation matrix at the voxel

2DEL , CPU = Intel Xeon E5-2630 v3 (8⇥2.4 GHz), RAM =
64GB, OS = Elementary OS 0.4 Loki

Word and Object Processing (DS107) Multi-subject, multi-modal (DS117)

Voxel Level Feature Level Voxel Level Feature Level 
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Table 1: Accuracy of binary predictors

Data Sets SVM Graph Net Elastic Net L1-Reg. SVM Osher et al. Proposed method
DS105: Objects vs. Scrambles 71.65±0.97 81.27±0.59 83.06±0.36 85.29±0.49 90.82±1.23 94.32±0.16
DS107: Words vs. Others 82.89±1.02 78.03±0.87 88.62±0.52 86.14±0.91 90.21±0.83 92.04±0.09
DS107: Consonants vs. Others 67.84±0.82 83.01±0.56 82.82±0.37 85.69±0.69 84.54±0.99 96.73±0.19
DS107: Objects vs. Others 73.32±1.67 77.93±0.29 84.22±0.44 83.32±0.41 95.62±0.83 93.07±0.27
DS107: Scrambles vs. Others 83.96±0.87 79.37±0.82 87.19±0.26 86.45±0.62 88.1±0.78 90.93±0.71
DS117: Faces vs. Scrambles 81.25±1.03 85.19±0.56 85.46±0.29 86.61±0.61 96.81±0.79 96.31±0.92
ALL: Faces vs. Others 66.27±1.61 68.37±1.31 75.91±0.74 80.23±0.72 84.99±0.71 89.99±0.31
ALL: Objects vs. Others 75.61±0.57 78.37±0.71 76.79±0.94 80.14±0.47 79.23±0.25 92.44±0.92
ALL: Scrambles vs. Others 81.92±0.71 81.08±1.23 84.18±0.42 88.23±0.81 90.5±0.73 95.39±0.18

Table 2: Area Under the ROC Curve (AUC) of binary predictors

Data Sets SVM Graph Net Elastic Net L1-Reg. SVM Osher et al. Proposed method
DS105: Objects vs. Scrambles 68.37±1.01 70.32±0.92 82.22±0.42 80.91±0.21 88.54±0.71 93.25±0.92
DS107: Words vs. Others 80.76±0.91 77.91±1.03 86.35±0.39 84.23±0.57 87.61±0.62 91.86±0.17
DS107: Consonants vs. Others 63.84±1.45 81.21±0.33 80.63±0.61 84.41±0.92 81.54±0.31 94.03±0.37
DS107: Objects vs. Others 70.17±0.59 76.14±0.49 81.54±0.92 80.92±0.28 94.23±0.94 92.14±0.42
DS107: Scrambles vs. Others 80.73±0.92 77±1.01 85.79±0.42 83.14±0.47 82.23±0.38 87.05±0.37
DS117: Faces vs. Scrambles 79.36±0.33 83.71±0.81 83.21±1.23 82.29±0.91 94.08±0.84 94.61±0.71
ALL: Faces vs. Others 61.91±1.2 65.04±0.99 74.9±0.61 78.14±0.83 83.89±0.28 91.05±0.12
ALL: Objects vs. Others 74.19±0.92 77.88±0.82 73.59±0.95 79.45±0.77 75.61±0.89 89.24±0.69
ALL: Scrambles vs. Others 79.81±1.01 80±0.49 82.53±0.83 88.14±0.91 88.93±0.71 92.09±0.28
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Figure 3: Correlation Matrix: for Visual Object Recog-
nition (DS105) data set (A) in the voxel level, (B) fea-
ture level, for Word and Object Processing (DS107)
data set (C) in the voxel level, (D) feature level, and
for multi-subject, multi-modal human neuroimaging
dataset (DS117) (E) in the voxel level, (F) feature level.

and scrambles (nonsense patterns). This data set is an-
alyzed in high-level visual stimuli as the binary predic-
tor, by considering all categories except nonsense photos
(scramble) as objects. Please see [5, 6, 11, 14, 26] for
more information. As the second data set, ‘Word and

Object Processing’ (DS107) includes U = 98 subjects.
It contains p = 4 categories of visual stimuli, i.e. words,
objects, scrambles, consonants. Please see [27] for more
information. As the last data set, ‘Multi-subject, multi-
modal human neuroimaging dataset’ (DS117) includes
MEG and fMRI images for U = 171 subjects. This
paper just uses the fMRI images of this data set. It
also contains p = 2 categories of visual stimuli, i.e.
human faces, and scrambles. Please see [28] for more
information. These data sets are separately prepro-
cessed by SPM 12 (6685) (www.fil.ion.ucl.ac.uk/spm/),
i.e. slice timing, realignment, normalization, smooth-
ing. This paper employs the Montreal Neurological In-
stitute (MNI) 152 T1 1mm as the reference image (Ref)
in (3.11) for mapping the extracted snapshots to the

standard space ( b i !  i). The size of this image in
3D scale is X = 182, Y = 218, Z = 182. Moreover, the
Talairach Atlas [29] (including L = 1105 regions) in the
standard space is used in (3.17) for extracting features.
Further, all of algorithms are implemented in the MAT-
LAB R2016b (9.1) on a PC with certain specifications2

by authors in order to generate experimental results.

4.2 Correlation Analysis Figure 3 A, C, and E
respectively demonstrate correlation matrix at the voxel

2DEL , CPU = Intel Xeon E5-2630 v3 (8⇥2.4 GHz), RAM =
64GB, OS = Elementary OS 0.4 Loki
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Table 1: Accuracy of binary predictors

Data Sets SVM Graph Net Elastic Net L1-Reg. SVM Osher et al. Proposed method
DS105: Objects vs. Scrambles 71.65±0.97 81.27±0.59 83.06±0.36 85.29±0.49 90.82±1.23 94.32±0.16
DS107: Words vs. Others 82.89±1.02 78.03±0.87 88.62±0.52 86.14±0.91 90.21±0.83 92.04±0.09
DS107: Consonants vs. Others 67.84±0.82 83.01±0.56 82.82±0.37 85.69±0.69 84.54±0.99 96.73±0.19
DS107: Objects vs. Others 73.32±1.67 77.93±0.29 84.22±0.44 83.32±0.41 95.62±0.83 93.07±0.27
DS107: Scrambles vs. Others 83.96±0.87 79.37±0.82 87.19±0.26 86.45±0.62 88.1±0.78 90.93±0.71
DS117: Faces vs. Scrambles 81.25±1.03 85.19±0.56 85.46±0.29 86.61±0.61 96.81±0.79 96.31±0.92
ALL: Faces vs. Others 66.27±1.61 68.37±1.31 75.91±0.74 80.23±0.72 84.99±0.71 89.99±0.31
ALL: Objects vs. Others 75.61±0.57 78.37±0.71 76.79±0.94 80.14±0.47 79.23±0.25 92.44±0.92
ALL: Scrambles vs. Others 81.92±0.71 81.08±1.23 84.18±0.42 88.23±0.81 90.5±0.73 95.39±0.18

Table 2: Area Under the ROC Curve (AUC) of binary predictors

Data Sets SVM Graph Net Elastic Net L1-Reg. SVM Osher et al. Proposed method
DS105: Objects vs. Scrambles 68.37±1.01 70.32±0.92 82.22±0.42 80.91±0.21 88.54±0.71 93.25±0.92
DS107: Words vs. Others 80.76±0.91 77.91±1.03 86.35±0.39 84.23±0.57 87.61±0.62 91.86±0.17
DS107: Consonants vs. Others 63.84±1.45 81.21±0.33 80.63±0.61 84.41±0.92 81.54±0.31 94.03±0.37
DS107: Objects vs. Others 70.17±0.59 76.14±0.49 81.54±0.92 80.92±0.28 94.23±0.94 92.14±0.42
DS107: Scrambles vs. Others 80.73±0.92 77±1.01 85.79±0.42 83.14±0.47 82.23±0.38 87.05±0.37
DS117: Faces vs. Scrambles 79.36±0.33 83.71±0.81 83.21±1.23 82.29±0.91 94.08±0.84 94.61±0.71
ALL: Faces vs. Others 61.91±1.2 65.04±0.99 74.9±0.61 78.14±0.83 83.89±0.28 91.05±0.12
ALL: Objects vs. Others 74.19±0.92 77.88±0.82 73.59±0.95 79.45±0.77 75.61±0.89 89.24±0.69
ALL: Scrambles vs. Others 79.81±1.01 80±0.49 82.53±0.83 88.14±0.91 88.93±0.71 92.09±0.28

(A) (B)

(C) (D) (E) (F)

Figure 3: Correlation Matrix: for Visual Object Recog-
nition (DS105) data set (A) in the voxel level, (B) fea-
ture level, for Word and Object Processing (DS107)
data set (C) in the voxel level, (D) feature level, and
for multi-subject, multi-modal human neuroimaging
dataset (DS117) (E) in the voxel level, (F) feature level.

and scrambles (nonsense patterns). This data set is an-
alyzed in high-level visual stimuli as the binary predic-
tor, by considering all categories except nonsense photos
(scramble) as objects. Please see [5, 6, 11, 14, 26] for
more information. As the second data set, ‘Word and

Object Processing’ (DS107) includes U = 98 subjects.
It contains p = 4 categories of visual stimuli, i.e. words,
objects, scrambles, consonants. Please see [27] for more
information. As the last data set, ‘Multi-subject, multi-
modal human neuroimaging dataset’ (DS117) includes
MEG and fMRI images for U = 171 subjects. This
paper just uses the fMRI images of this data set. It
also contains p = 2 categories of visual stimuli, i.e.
human faces, and scrambles. Please see [28] for more
information. These data sets are separately prepro-
cessed by SPM 12 (6685) (www.fil.ion.ucl.ac.uk/spm/),
i.e. slice timing, realignment, normalization, smooth-
ing. This paper employs the Montreal Neurological In-
stitute (MNI) 152 T1 1mm as the reference image (Ref)
in (3.11) for mapping the extracted snapshots to the

standard space ( b i !  i). The size of this image in
3D scale is X = 182, Y = 218, Z = 182. Moreover, the
Talairach Atlas [29] (including L = 1105 regions) in the
standard space is used in (3.17) for extracting features.
Further, all of algorithms are implemented in the MAT-
LAB R2016b (9.1) on a PC with certain specifications2

by authors in order to generate experimental results.

4.2 Correlation Analysis Figure 3 A, C, and E
respectively demonstrate correlation matrix at the voxel

2DEL , CPU = Intel Xeon E5-2630 v3 (8⇥2.4 GHz), RAM =
64GB, OS = Elementary OS 0.4 Loki
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q 0	 < 𝜎 < 	1 can
create design matrix,
which is sensitive to
small spikes.

q 𝜎	 > 	1	 can increase
the level of smoothness
that can remove some
weak local maximums,
especially in the event-
related data sets.
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(a) Design matrix in the block-design experiment
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(b) Design matrix in the event-related experiment

Figure 1: Two examples of smoothed version of the design matrix. The blue lines show the original convolution
(di = Si ⇤H), the red dashed lines depict the smooth versions (�i = (Si ⇤H) ⇤G), and the green circles illustrate

the locations (S⇤
i ) of the detected snapshots ( b ).

Algorithm 1 The Snapshots Selection Algorithm

Input: fMRI time series F, time points (onsets) S,
HRF signal H, , Gaussian Parameter �G:

Output: Snapshots  , the sets of correlations b�:
Method:

1. Generating the design matrix D = S ⇤H.
2. Defining F = Db� + ".
3. Calculating b� by using (3.2).
4. Generating Gaussian kernel by (3.4).
5. Smoothing the design matrix by (3.5).
6. Finding locations of the snapshots by (3.8).

7. Calculating snapshots b by using (3.9).

be formulated by a linear model as follows:

(3.1) F = D(b�)| + "

where D 2 Rt⇥p denotes the design matrix, " is
the noise (error of estimation), b� 2 Rm⇥p denotes
the sets of correlations (estimated regressors) between
voxels. The design matrix can be denoted by D =
{d1,d2, . . . ,di, . . . ,dp}, and the sets of correlations can

be defined by b� = {b�1, b�2, . . . , b�i, . . . , b�p}. Here, di 2
Rt and b�i 2 Rm are the column of design matrix and
the set of correlations for i� th category, respectively. p
is also the number of all categories in the experiment F.
In fact, each category (independent tasks) contains a set
of homogeneous visual stimuli. In addition, the nonzero
voxels in b�i represents the location of all active voxels for
the i�th category [24]. As an example, imagine during a
unique session for recognizing visual stimuli, if a subject
watches 4 photos of cats and 3 photos of houses, then
the design matrix contains two columns; and there are
also two sets of correlations between voxels, i.e. one for
watching cats and another for watching houses. Indeed,
the final goal of this section is extracting 7 snapshots of
the brain image for the 7 stimuli in this example.

The design matrix can be classically calculated
by convolution of time samples (or onsets: S =
{S1,S2, . . . ,Si, . . . ,Sp}) and H as the Hemodynamic
Response Function (HRF) signal, di = Si ⇤ H =)
D = S⇤H [11, 24]. In addition, there is a wide range of

solutions for estimating b� values. This paper uses the
classical method Generalized Least Squares (GLS) [24]

for estimating the b� values where ⌃ is the covariance
matrix of the noise (V ar(") = ⌃�2 6= I�2):

(3.2) b� =
�
(D|⌃�1D)

�1
D|⌃�1F

�|

Each local maximum in di represents a location where
the level of using oxygen is so high. In other words,
the stimulus happens in that location. Since di mostly
contains small spikes (especially for event-related exper-
iments), it cannot be directly used for finding these local
maximums. Therefore, this paper employs a Gaussian
kernel for smoothing the di signal. Now, the interval bG
is defined as follows for generating the kernel:
(3.3)

bG =

⇢
exp

✓
�bg2

2�2
G

◆ ���� bg 2 Z and �2d�Ge  bg  2d�Ge
�

where �G > 0 denotes a positive real number; d.e is
the ceiling function; and Z denotes the set of integer
numbers. Gaussian kernel is also defined by normalizing
bG as follows:

(3.4) G =
bGP
j bgj

where
P

j bgj is the sum of all elements in the interval bG.
This paper defines the smoothed version of the design
matrix by applying the convolution of the Gaussian
kernel G and each column of the design matrix (di)
as follows:

(3.5) �i = di ⇤G = (Si ⇤H) ⇤G
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(a) Design matrix in the block-design experiment
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(b) Design matrix in the event-related experiment

Figure 1: Two examples of smoothed version of the design matrix. The blue lines show the original convolution
(di = Si ⇤H), the red dashed lines depict the smooth versions (�i = (Si ⇤H) ⇤G), and the green circles illustrate

the locations (S⇤
i ) of the detected snapshots ( b ).

Algorithm 1 The Snapshots Selection Algorithm

Input: fMRI time series F, time points (onsets) S,
HRF signal H, , Gaussian Parameter �G:

Output: Snapshots  , the sets of correlations b�:
Method:

1. Generating the design matrix D = S ⇤H.
2. Defining F = Db� + ".
3. Calculating b� by using (3.2).
4. Generating Gaussian kernel by (3.4).
5. Smoothing the design matrix by (3.5).
6. Finding locations of the snapshots by (3.8).

7. Calculating snapshots b by using (3.9).

be formulated by a linear model as follows:

(3.1) F = D(b�)| + "

where D 2 Rt⇥p denotes the design matrix, " is
the noise (error of estimation), b� 2 Rm⇥p denotes
the sets of correlations (estimated regressors) between
voxels. The design matrix can be denoted by D =
{d1,d2, . . . ,di, . . . ,dp}, and the sets of correlations can

be defined by b� = {b�1, b�2, . . . , b�i, . . . , b�p}. Here, di 2
Rt and b�i 2 Rm are the column of design matrix and
the set of correlations for i� th category, respectively. p
is also the number of all categories in the experiment F.
In fact, each category (independent tasks) contains a set
of homogeneous visual stimuli. In addition, the nonzero
voxels in b�i represents the location of all active voxels for
the i�th category [24]. As an example, imagine during a
unique session for recognizing visual stimuli, if a subject
watches 4 photos of cats and 3 photos of houses, then
the design matrix contains two columns; and there are
also two sets of correlations between voxels, i.e. one for
watching cats and another for watching houses. Indeed,
the final goal of this section is extracting 7 snapshots of
the brain image for the 7 stimuli in this example.

The design matrix can be classically calculated
by convolution of time samples (or onsets: S =
{S1,S2, . . . ,Si, . . . ,Sp}) and H as the Hemodynamic
Response Function (HRF) signal, di = Si ⇤ H =)
D = S⇤H [11, 24]. In addition, there is a wide range of

solutions for estimating b� values. This paper uses the
classical method Generalized Least Squares (GLS) [24]

for estimating the b� values where ⌃ is the covariance
matrix of the noise (V ar(") = ⌃�2 6= I�2):

(3.2) b� =
�
(D|⌃�1D)

�1
D|⌃�1F

�|

Each local maximum in di represents a location where
the level of using oxygen is so high. In other words,
the stimulus happens in that location. Since di mostly
contains small spikes (especially for event-related exper-
iments), it cannot be directly used for finding these local
maximums. Therefore, this paper employs a Gaussian
kernel for smoothing the di signal. Now, the interval bG
is defined as follows for generating the kernel:
(3.3)

bG =

⇢
exp

✓
�bg2

2�2
G

◆ ���� bg 2 Z and �2d�Ge  bg  2d�Ge
�

where �G > 0 denotes a positive real number; d.e is
the ceiling function; and Z denotes the set of integer
numbers. Gaussian kernel is also defined by normalizing
bG as follows:

(3.4) G =
bGP
j bgj

where
P

j bgj is the sum of all elements in the interval bG.
This paper defines the smoothed version of the design
matrix by applying the convolution of the Gaussian
kernel G and each column of the design matrix (di)
as follows:

(3.5) �i = di ⇤G = (Si ⇤H) ⇤G
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Figure 1: Parameters Analysis, (A) The e↵ect of di↵erent �G values on the # of wrong detected snapshots, (B)
and (C) two examples for the error of registration (normalization): the red rectangles illustrate the error areas
after registration, (D) The e↵ect of di↵erent objective functions in (3.11) on the error of registration.
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Figure 2: Comparing di↵erent categories of visual stimuli at the level of ROIs by using the biomarkers (the weights
of the trained binary classifiers).

The error of registration (normalization): the red 
rectangles illustrate the error areas

(3.6) � = {�1,�2, . . . ,�p}

where �i = f (Si,H,G). Since the level of smoothness
in � is related to the positive value in (3.3), �G = 1
is heuristically defined to generate the optimum level
of smoothness in the design matrix. The general
assumption here is the 0 < �G < 1 can create design
matrix, which is sensitive to small spikes. Further,
�G > 1 can rapidly increase the level of smoothness,
and remove some weak local maximums, especially in
the event-related fMRI data sets. Figure 1 illustrates
two examples of the smoothed columns in the design
matrix. The local maximum points in the �i can be
calculated as follows:

(3.7) S⇤
i =

⇢
arg
Si

�i

����
@�i
@Si

= 0 and
@2�i
@SiSi

> 0

�

where S⇤
i ⇢ Si denotes the set of time points for all local

maximums in �i. The sets of maximum points for all
categories can be denoted as follows:

(3.8) S⇤ = {S⇤
1,S

⇤
2, . . . ,S

⇤
i , . . . ,S

⇤
p}

As mentioned before, the fMRI time series can be also
denoted by F| = {f|1 , f

|
2 , . . . , f

|
j , . . . , f

|
t }, where f|j 2

Rm is all voxels of fMRI data set in the j � th time
point. Now, the set of snapshots can be formulated as
follows:

(3.9) b = {f|j | f|j 2 F| and j 2 S⇤} =

{c 1,c 2, . . . ,c k, . . .c q} 2 Rm⇥q

where q is the number of snapshots in the brain image
F, and c k 2 Rm denotes the snapshot for k � th
stimulus. These selected snapshots are employed in next
section for extracting features of the neural activities.
Algorithm 1 illustrates the whole of procedure for
generating the snapshots from the time series F.

3.2 Feature Extraction In this paper, the feature
extraction is applied in three steps, i.e. normalizing
snapshots to standard space, segmenting the snapshots
in the form of automatically detected regions, and
removing noise by Gaussian smoothing in the level
of ROIs. As mentioned before, normalizing brain
image to the standard space can increase the time and
space complexities and decrease the robustness of MVP
techniques, especially in voxel-based methods [5]. On
the one hand, most of the previous studies [3, 4, 6,
11] preferred to use original data sets instead of the
standard version because of the mentioned problem. On
the other hand, this mapping can provide a normalized
view for combing homogeneous data sets. As a result,

it can significantly reduce the cost of brain studies and
rapidly increase the chance of understanding how the
brain works. Employing brain snapshots rather than
analyzing whole of data can solve the normalization
problem.

Normalization can be formulated as a mapping
problem. Indeed, brain snapshots are mapped from Rm

space to the standard space Rn by using a transforma-
tion matrix for each snapshot. There is also another
trick for improving the performance of this procedure.
Since the set b�i denotes the locations of all active vox-
els for the i� th category, it represents the brain mask
for that category and can be used for generating the
transform matrix related to all snapshots belong to that
category. For instance, in the example of the previous
section, instead of calculating 7 transform matrices for
7 stimuli, we calculate 2 matrices, including one for the
category of cats and the second one for the category of
houses. This mapping can be denoted as follows:

(3.10) Ti: b�i 2 Rm ! �i 2 Rn

where Ti 2 Rm⇥n denotes the transform matrix, �i =�
(b�i)|Ti

�|
is the set of correlations in the standard

space for i� th category. This paper utilizes the FLIRT
algorithm [25] for calculating the transform matrix,
which minimizes the following objective function:

(3.11) Ti = argmin(NMI(b�i,Ref))

where the function NMI denotes the Normalized Mu-
tual Information between two images [25], and Ref 2
Rn is the reference image in the standard space. This
image must contain the structures of the human brain,
i.e. white matter, gray matter, and CSF. These struc-
tures can improve the performance of mapping be-
tween the brain mask in the selected snapshot and
the general form of a standard brain. The perfor-
mance of (3.11) will be analyzed in the supplemen-
tary materials1. In addition, the sets of correla-
tions for all of categories in the standard space is de-
noted by � = {�1,�2, . . . ,�i, . . . ,�p} 2 Rn⇥p, and
the sets of transform matrices is defined by T =
{T1,T2, . . . ,Ti, . . . ,Tp}. Now, the Select function is
denoted as follows to find suitable transform matrix for
each snapshot:

�
T⇤

j ,�
⇤
j

�
= Select(c j ,T,�) = {(Ti,�i) |

Ti 2 T, �i 2 � , c j is belonged to the i� th

category =) c j / �i / Ti}

(3.12)

1Supplementary Materials is available:
sourceforge.net/projects/myousefnezhad/files/MRNR/
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q This paper proposes Multi-Region Neural
Representation as a novel feature space for decoding
visual stimuli in the human brain.

q Experimental studies on 4 visual categories (words,
objects, consonants and nonsense photos) clearly show
the superiority of our proposed method in comparison
with state-of-the-art methods.

q In future, we plan to apply the proposed method to
different brain tasks such as risk, emotion and etc.
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