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Predicting pediatric anxiety 
from the temporal pole using 
neural responses to emotional 
faces
Jeffrey Sawalha1,2,3,6, Muhammad Yousefnezhad1,2,3,6, Alessandro M. Selvitella4,5, Bo Cao1, 
Andrew J. Greenshaw1 & Russell Greiner1,2,3*

A prominent cognitive aspect of anxiety is dysregulation of emotional interpretation of facial 
expressions, associated with neural activity from the amygdala and prefrontal cortex. We report 
machine learning analysis of fMRI results supporting a key role for a third area, the temporal pole (TP) 
for childhood anxiety in this context. This finding is based on differential fMRI responses to emotional 
faces (angry versus fearful faces) in children with one or more of generalized anxiety, separation 
anxiety, and social phobia (n = 22) compared with matched controls (n = 23). In our machine learning 
(Adaptive Boosting) model, the right TP distinguished anxious from control children (accuracy = 81%). 
Involvement of the TP as significant for neurocognitive aspects of pediatric anxiety is a novel finding 
worthy of further investigation.

Clinical anxiety is associated with inability to control or auto-regulate one’s autonomic  response1, and it is the 
most common mental illness among children and young  adults2 with a lifetime prevalence rate of 28.8%3,4. The 
median age of onset for all anxiety disorders, at 11 years old, marks this as the earliest among all psychiatric 
disorders, and over 30% of pediatric cases meet criteria for two or more  subtypes2,4. Despite high prevalence 
and possible early onset, these disorders are often under-reported because of conflation of normal developmen-
tal-behavioral patterns with anxiety symptoms. Assessment is typically limited to diagnostic interviews and 
questionnaires to produce a diagnostic label, which comes with its own validity  issues3,5,6. Anxiety and related 
symptoms may have profound effects on neurological functioning in a child’s rapidly developing  brain5,7 and, 
over extended periods of time, may lead to cognitive, social, and emotional  deficits1. For example, adolescents 
with high trait anxiety exhibit an attentional bias (pay greater attention) to negatively valenced  faces8,9. Although 
socioemotional circuits in the brain have been implicated in numerous psychiatric disorders, including  anxiety10, 
such cognitive deficits have rarely been used as an indication of brain mechanisms underlying psychopathology.

Cognitive models of anxiety suggest that negative biases exist for performance on information-processing 
 tasks11—in particular, anxious individuals allocate greater attention to negative or threatening  stimuli9. They 
may find threatening words more salient, and may remember them more often than non-threatening  words12,13. 
Emotional facial expressions are often perceived as more negative or threatening (even if they are typically judged 
as neutral), and this is associated with activation of affective brain  circuits8,14. These attentional and perceptual 
biases are thought to be an important feature underlying the etiology of anxiety disorders, a view supported by 
functional neuroimaging studies. Despite the likely clinical significance of these biases, few studies have focused 
on the adolescent population during a facial emotional processing  task15–17, and rarely have machine learning 
methods been applied to assess if neural signatures underlying such biases may be used to identify children 
suffering from anxiety.

Functional neuroimaging measurements during facial processing tasks have helped reveal neurological 
underpinnings of emotional regulation. Overall, there is evidence of dysregulated fear-circuitry related regions, 
including the amygdala and prefrontal cortex (PFC)18. Children with panic disorder (PD) or generalized anxi-
ety disorder (GAD) may exhibit exaggerated amygdala responses to fearful faces compared to non-anxious or 
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depressed  children19. Hyperactivity has been observed in several limbic brain regions in separation anxiety 
disorder (SAD) patients when responding to fearful faces, including the fusiform gyrus (associated with facial 
recognition), and there is evidence of increased connectivity between the fusiform gyrus and amygdala, as 
well as the fusiform gyrus and the superior temporal  sulcus20. Also, abnormal neural responses to emotional 
faces have been reported for adults with GAD, PD and SAD, with greater right amygdala activation reported in 
response to fearful versus happy  faces21. From these studies, similar amygdala activation patterns to happy faces 
were reported for both patients and controls, indicating that this area is also responsive to positively valenced 
facial expressions. Increased responses in the superior temporal sulcus, an important area for deriving social and 
emotional information, were observed for SAD and PD patients viewing fearful faces. The findings mentioned 
above have focused mainly on between group differences or similarities. In recent years, advanced data analysis 
methods, such as machine learning, have enabled accurate prediction on an individual  basis22. This approach 
holds the potential to enable improvement of clinical decision-making (such as diagnostic assessments), and to 
provide evidence-based determination of which brain regions display the largest differences between individuals 
in different classes (diagnosis versus no-diagnosis cases), based on fMRI data, while the participants perform 
passive or active tasks. In this study, we explore whether machine learning analysis of emotional facial recogni-
tion may allow us to identify, with higher precision, which children will suffer from anxiety.

Conventional neuroimaging analysis of two different populations (anxious versus non-anxious) involves 
comparing neural activation of various regions between the groups, anticipating that comparing the blood 
oxygenation level-dependent response (BOLD) at specific voxels will show significant differences. However, this 
analysis mainly focuses on univariate and group-level statistics, and may not lead to predictions for individual 
cases due to the overlap of neural responses at any given  voxel22,23. Multivoxel pattern classification (MVPA) 
applies machine learning algorithms to fMRI BOLD signals to produce predictive  models24. These models can 
categorize brain patterns into distinct stimulus conditions (emotional faces) or groups based on spatial and 
temporal discriminative neural signatures from high dimensional neuroimaging  data23. This analysis can also 
reveal which brain regions differ the most between two groups or stimulus conditions. Neural signatures can 
be further clarified with advanced alignment techniques like the probabilistic shared response model (SRM), 
which aligns patterns of neural responses across subjects into a common, lower-dimensional  space25. Here, we 
demonstrate that MVPA can be used to decode brain patterns related to the disease state of adolescent children. 
MVPA may also indicate which brain regions are key aspects for altered functional connectivity in anxious 
children in this context.

Using a publicly available dataset (https:// openn euro. org/ datas ets/ ds000 144) consisting of task-based fMRI 
data from children with anxiety disorders such as SAD, SP and GAD: (1) We applied a data driven approach to 
determine a combination of brain regions to distinguish anxious versus non-anxious children with above chance 
accuracy based on facial-emotional processing. (2) We examined neural correlates of angry and fearful faces to 
distinguish those stimuli using similar techniques. Figures 1 and 6 illustrate the analysis and posthoc pipeline 
for these research questions (refer to the online methods for a full description of the study).

Our approach is based on task-based fMRI data rather than resting-state  MRI26. A key question is whether 
task-based fMRI derived regions can be linked to various resting-state networks in this context. Many reports 
indicate that a functional imbalance in large scale networks, such as the default mode network (DMN), the 
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Figure 1.  Processing pipeline for selecting the best Talairach region. Super learner (SL) parcellates the whole-
brain data into 959 regions based on the Talairach atlas. It determines which region can best distinguish between 
anxious and non-anxious children. The SL uses a nested cross-validation process to hyper-tune parameters 
for an AdaBoost model. The SL uses the regions as a hyperparameter within this process. The region with the 
highest average accuracy was selected for our analysis. Note: each time point produced its own prediction; we 
labeled each person with the majority vote over the time points for that subject.

https://openneuro.org/datasets/ds000144


3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:16723  | https://doi.org/10.1038/s41598-021-95987-4

www.nature.com/scientificreports/

salience network, or the affective network, play a crucial role in anxiety  disorders27–29. However, we found that 
intrinsic resting-state network activity may not differ significantly from task evoked responses, in accordance 
with several sources suggesting that task-based responses are related to modest changes compared to intrinsic 
 activity30,31. If certain regions arise as significant predictors of childhood anxiety using machine learning analysis 
for the task-based approach, it will be important to compare them with components of resting-state networks 
previously associated with anxiety.

Research has not yet established a clear link between brain-behavioral function and clinical diagnosis in 
children, which is problematic. The hope is that research into developmental psychopathology will bridge the gap 
between psychiatric practice and  neuroscience32. Our current approach may enable us to relate functional brain 
measures to pediatric diagnoses in anxiety disorders, and may also help to generate new therapeutic insights.

To date, we are not aware of published attempts to use machine learning to validate psychiatric disorders 
in young children (in this case, 5–10 years old) using task-based fMRI data. We propose that distinguishable 
neural substrates in anxious vs. non-anxious children can be identified with our machine learning approach for 
individual predictions on a case by case basis.

Results
Clinical and demographic statistical analysis. Table  1 shows demographic and clinical data from 
22 anxious and 23 non-anxious children in our sample, including comorbidities and overlap between various 
anxiety disorders. When testing for group differences in age, a two-tailed t-test revealed a significant difference 
between the anxious and non-anxious group ( t(43) = 2.03, p < 0.05 ) and the SP cohort ( t(32) = 2.36, p < 0.02 ). 
When measuring functional impairment and emotional symptoms, the anxious groups differed significantly 
from the non-anxious group ( p < 0.005 ). No statistical differences were found when comparing sex, ethnicity, 
handedness, IQ, or socioeconomic status between any of the groups. Note, we compare non-anxious individuals 
against each of the anxious subtypes for this statistical test only. Our machine learning task combines all anxious 
subtypes into the main anxious group as shown in Table 1.

Anxious versus non‑anxious classification analysis. Machine learning analysis. Using the Talairach 
atlas (2mm), we use a super learner (SL) to segment the whole-brain data into 959 regions, then train a Ada-
Boost with the regions serving as a hyper-parameter. Here, the SL used nested cross validation (CV) (5-CV on 
the outer and inner loop) to partition and fine tune hyper-parameters. Figure 1 illustrates the machine learning 
pipeline for this section. The SL achieved the highest accuracy by using voxels from region #41 with 81% (STE ± 
1.46%) (MNI: x = 40, y = 11, z = − 35) (Right temporal pole, right Cerebrum, Superior Temporal Gyrus, Brod-
mann area #38). When examining differences between the second and third ranked regions from our internal 
CV process, the accuracy of region #41 was not statistically different than region #664 , which had an accuracy 
of 77% (STE ± 1.33%) (MNI: x = 10, y = − 50, z = 20) (Right cerebrum, Limbic lobe. Posterior cingulate white 
matter) ( t(21) = 0.16, p = 0.87 ) or region #720 , which had an accuracy of 76% (STE ± 1.52%) (MNI: x = − 52, y 
= − 19, z = 7) (Left Cerebrum, Transverse temporal gyrus, Brodmann area 38) ( t(21) = 0.18, p = 0.85 ). This can 
be viewed in Fig. 2, which includes the top 20 ranked regions from the SL’s internal CV mean accuracy. Note that 
region #664 included white matter tracts that were proximal and inside region #41, and region #720 was the left 
hemisphere temporal pole.

Classification performance was measured using accuracy (percentage of correctly classified participants), pre-
cision, sensitivity, recall, and F1-score. Using our SL, we achieved an accuracy of 81% an overall precision of 80% 
as seen in Fig. 7A, recall at 80% and an F1-score of 80%. Table S1 reveals the detailed results of our final SL model.

To ensure these results were not driven by several confounding factors, we observed individual accuracies 
across a number of variables including age, anxious subtypes, and the different fMRI scanner sites. First, we 
plotted the individual accuracy of every participant based on their class label in Fig. 3. In Fig. 4C, we can see the 
average accuracy for each class subtype. The control group had an average accuracy of 81%. Our model returned 
an average accuracy of 76% for children with both GAD and SP, 76% for SP and SAD, 83% for GAD only, 70% 

Table 1.  A summary table of demographic and clinical symptom scores of participants. The anxious group 
contained individuals with one or more anxiety disorders from the mentioned subtypes. The 3 anxiety 
subtypes are not mutually exclusive. T-tests were conducted between the non-anxious group and all anxious 
subtypes, as well as the whole anxious group. Mean values and standard deviations are reported for all 4 
groups. Significant difference from non-anxious children at ∗p < 0.05 , ∗∗p < 0.005.

Non-anxious (N=23) Anxious (N=22) Generalized anxiety (N=15) Separation anxiety (N=10) Social Phobia (N=11)

Demographics

Age at scan 7.48 (1.04) 6.86 (0.99)∗ 6.86 (1.06) 7.00 (1.33) 6.63 (0.81)∗

Female 13 16 12 7 8

Ethnicity 12 10 8 6 3

Below poverty 4 6 5 5 2

Handedness (right) 16 18 14 7 8

IQ 104.48 (14.02) 103.86 (10.81) 103.52 (11.51) 103.20 (10.63) 106.18 (9.54)

Symptoms
Impairment (0–10) 0.74 (1.09) 3.5 (2.35)∗∗ 3.93 (2.66)∗∗ 3.80 (2.62)∗∗ 3.28 (1.68)∗∗

Emotional symptoms (0–14) 2.17 (1.99) 6.54 (2.91)∗∗ 7.26 (3.13)∗∗ 8.40 (2.91)∗∗ 5.81 (2.40)∗∗



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:16723  | https://doi.org/10.1038/s41598-021-95987-4

www.nature.com/scientificreports/

for SP only, 94% for SAD and GAD, and 72% for SAD and SP. Of note, children with only SP (n = 3) had large 
variations between accuracies, so the 95% confidence interval (CI) is quite expansive. Figure 4A shows accura-
cies grouped by age. With region #41 alone, our AdaBoost model could perfectly predict children ages 9–10 
while also maintaining accuracies above 75% for all other age groups. We also plotted accuracies of individuals 
based on scanner sites in Fig. 4B to determine whether a given scanner was driving our model results. Although 
scanner #0 had half the participants compared to scanner #1, the accuracies between the two are almost identical 
(scanner #0 = 82%, 95% CI (70.62–93.57), scanner #1 = 80%, 95% CI (70.24–90.45).

Statistical analysis of Talairach region #41. Here, we conducted a high level, between-group ROI analysis for 
region #41 to examine the neural response differences between anxious and non-anxious children. Using the 
neural responses from our second level grouped Bayesian representational similarity analysis (GBRSA), we com-
pared activation in this region by using a mask to confine our analysis. Details on this procedure can be found in 
the online methods. This brain mask was used to extract this specific region only for our statistical test. Figure 5 

Figure 2.  Top 20 Talairach regions by accuracy (%). The SL considered classifiers produced by base learners, 
each applied to a specific region. This shows the mean 5-fold internal CV accuracies, for the top 20 regions. The 
SL selected region # 41 to best distinguish anxious from non-anxious children. Other highly ranked regions 
include region # 664 (Right cerebrum, Limbic lobe. Posterior cingulate white matter) and region # 720 (Left 
Cerebrum, Transverse temporal gyrus, Brodmann area 38). All error bars represent the standard error of each 
participant across inner-CV folds from the SL. Red stripped line represents baseline accuracy for the majority 
group (51.1 %).

Figure 3.  Individual accuracies (%) of participants based on sub-classes from final super learner model. A plot 
of each participants mean accuracy across 35 time points, grouped by subtypes from our final AdaBoost model, 
which learned from voxels in only region # 41.
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Figure 4.  (A) Individual accuracies grouped across age (5–10) from super learner model. Mean accuracy of 
individuals grouped by age. (B) Individual accuracies grouped across fMRI scanner sites. Mean accuracy of 
individuals grouped by the two fMRI scanner sites. (C) Individual accuracies grouped by anxious subtypes. 
Mean accuracy of individuals with one or more comorbid anxiety diagnosis. All error bars represent the 95% 
confidence intervals through bootstrapping of individual accuracies.

Figure 5.  (Left) Grouped Bayesian representational similarity analysis of region #41. A between-group ROI 
analysis was used to examine activation differences for anxious versus non-anxious children. In our statistical 
comparisons, 685 pairs of mean beta values in region #41 were compared between each group using a Mann-
Whitney U-test (two-tailed). (U = 215017.00, p < 0.005 ). (Right) Fully connected network analysis of Talairach 
region #41 with anxious versus non-anxious children. A visual representation of regions connected with region 
#41 . Dots represent the 38 regions with absolute correlation thresholds greater than 0.6, each connected with a 
red line to region #41 . (A) Fully connected network for non-anxious children. (B) Fully connected network for 
anxious children.
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(left) shows the region-based neural responses for both anxious and non-anxious children. We compared all 685 
pairs of voxels in this region using a Mann-Whitney U test (two-tailed). The statistical test confirmed that the 
distribution of beta values from our GBRSA analysis for the anxious group was significantly different from the 
non-anxious group in region #41 ( U = 215017.00, p < 0.005).

Figure 5 (right) represents the fully connected network analysis for region #41. We examined neural activ-
ity of highly correlated brain regions with region #41 in both groups. We only drew connected regions with an 
absolute correlation threshold value of 0.6 or higher, and represented those using the red lines extending from 
region #41. Table 2 reveals 26 regions that have a correlation value of greater than 0.60 in the anxious group, but 
only 16 for the non-anxious group.

Negative stimuli classification. Model classification of fearful versus angry faces. As a posthoc analysis, 
we trained a linear Support Vector Machine (SVM) to predict whether a participant (either anxious or not) was 
viewing a fearful or angry face at a given time, using only voxels from region #41 , which was predetermined from 

Table 2.  Talairach regions most correlated with region #41. These values represent the absolute Pearson 
correlation between different Talairach regions and region #41 (threshold to above 0.6). Twenty-six regions 
show a Pearson correlation with region #41 above 0.6 for anxious children, but only 16 for non-anxious 
children. STG Superior temporal gyrus, ITG Inferior temporal gyrus, MTG Medial temporal gyrus, WMT 
White matter tract, IFG Inferior frontal gyrus, VAN Ventral anterior nucleus, SOG Superior occipital gyrus, 
SFG Superior frontal gyrus.

Brain regions correlated with Region #41 Non-anxious Anxious

R. Temp. lobe, STG 0.87 0.90

L. STG, Brodmann 38 0.83 <0.60

R. ITG, Brodmann 21 0.65 <0.60

R. MTG, Brodmann 21 0.71 <0.60

L. STG 0.74 0.75

L. Fusiform Gyrus <0.60 0.63

L. Fusiform Gyrus, Brodmann 20 <0.60 0.66

L. Fusiform Gyrus, WMT <0.60 0.66

L. Parahippocampal Gyrus, Brodmann 36 <0.60 0.66

L. Fusiform Gyrus, Brodmann 36 <0.60 0.68

R. Amygdala <0.60 0.67

L. Front. lobe, IFG <0.60 0.67

R. Front. lobe, IFG <0.60 0.83

R. IFG Brodmann 47 <0.60 0.72

R. Font. lobe, IFG, WMT <0.60 0.74

R. Parahippocampal Gyrus, Brodmann 20 <0.60 0.69

R. Parahippocampal Gyrus, Brodmann 38 0.72 <0.60

R. Frontal lobe, STG <0.60 0.72

R. Temp. lobe, IFG 0.73 0.71

L. Sub-Gyral 0.64 <0.60

R. Temp. Sub-Gyral Brodmann 13 0.66 <0.60

R. Temp. Sub-Gyral 0.73 <0.60

R. Front. Lobe, Sub-Gyral Brodmann 47 <0.60 0.63

R. Brainstem Extra-Nuclear WMT <0.60 0.64

R. Cerebrum Extra-Nuclear WMT <0.60 0.66

L. Temp. Lobe, Insula Brodmann 13 0.64 <0.60

L. Front. Lobe, IFG Brodmann 45 <0.60 0.73

R. Front. Lobe, IFG Brodmann 45 <0.60 0.74

R. Front. lobe, SFG 0.71 <0.60

R. Thalamus, VAN 0.64 <0.60

R. Front. lobe, Precentral Gyrus <0.60 0.70

R. Front. Lobe, IFG Brodmann 44 <0.60 0.71

Cuneus 0.70 <0.60

L. Occip. Lobe, Ceneus Brodmann 19 0.65 <0.60

L. Temp. Lobe, SOG 0.66 <0.60

R. Front. Lobe, IFG, Brodmann 9 <0.60 0.63

L. Occip. Lobe, SOG Brodmann 39 <0.60 0.64
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our SL. We applied a probabilistic shared response model (SRM) to functionally align the shared feature space 
across all subjects, as seen in Fig. 6. Using 5 fold-CV, with this new representational space, we achieved an ac-
curacy of 97.1% (STE ± 0.43%) with a precision of 97.5%, a recall of 97.1%, and an F1 score of 97.1% when clas-
sifying fearful and angry faces. Please refer to Table S2 for evaluation metrics. When we trained the same model 
without functional alignment, we only achieved an accuracy of 49.4% (STE ± 0.81%), a precision of 45.1%, a 
mean recall of 49.4%, and an F1 score of 42.7% as seen in Table S2. Figure 7B reveals the precision of the SVM 
with and without functional alignment.
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Figure 6.  Posthoc analysis: Preprocessing pipeline for negative stimuli analysis. Voxels from the selected region 
(from the primary analysis) were used to predict the stimulus label for each time point (fear versus anger). We 
used a probabilistic shared response model (SRM) to transform all functional images into a shared common 
space. Thereafter, a linear SVM was trained on the functionally aligned data, which were used to predict a facial 
stimulus for each time point, for each subject. Model metrics include mean accuracy and standard error from 
fivefold CV.

Figure 7.  Precision tables for both anxious versus non-anxious and negative stimuli classification analysis. 
(A) Precision table for anxious versus non-anxious AdaBoost classification model. (B) Precision table for 
fearful versus angry faces, linear SVM with and without functional alignment. (C) Precision table for four-
class classification model of negative stimuli and disease state. All error bars represent the standard error of the 
precision across outer-CV folds.
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Four‑class classification. This final classification model coupled the predictions from our primary analysis and 
negative stimuli classification models into a four-class performance task. For each time point, our ensemble 
model predicts which group the subject was from (anxious versus non-anxious), and what type of stimuli he/she 
was viewing at that time (anger versus fearful faces). Our model was able to achieve a balanced accuracy of 73% 
(STE ± 0.06%) which is an improvement from baseline (26%). Mean precision, recall, and F1 scores were also 
73%. Non-anxious children viewing angry faces revealed the highest recall at 76%, and non-anxious children 
viewing fearful faces revealed the highest precision at 75% as seen in Fig. 7C and Table S3. No significant differ-
ences were found between the 4 classes with respect to their precision, recall, or F1 scores.

Discussion
This study illustrated that a data-driven, machine learning approach can be used to distinguish anxious children 
from non-anxious children and identify which regions may be important for this performance task. Talairach 
region #41 (aka, Brodmann’s area 38, right temporal pole, planum polare, or area TG) can be used to distinguish 
anxious children from non-anxious children based on their brain scans, as they view negative facial stimuli. We 
demonstrate that task-based fMRI activity related to this anatomical area is sufficient to achieve a relatively high 
accuracy. In our primary analysis, we trained an SL to parcellate regions and train a non-linear model on those 
regions. Region #41 was selected as part of our final model, which had an accuracy of 81%. This was compared 
to a model which included whole-brain activity (54% accuracy), and a searchlight analysis (59.2% accuracy). 
When examining confounding variables such as age, anxious subtypes and scanner sites, they did not seem to 
drive the accuracy of our model. Though, we could not run statistical tests because the subtypes and age groups 
samples were too small in some cases. It is difficult to discern whether our model is partial to certain subtypes 
of anxiety, but our results suggest the SL performed well regardless. Additionally, we examined the functional 
connectivity between region #41 and other areas and found that anxious children showed similar correlational 
patterns between several regions that make up the affective network. In addition, anxious children also exhibited 
more and stronger correlational patterns to other brain regions compared to non-anxious children. These pat-
terns seem to be part of a distributed neuronal network related to mood regulation and affective  processing27,33. 
However, very little research has been conducted on this particular region in relation to pediatric anxiety.

In our posthoc analysis, we examined how neural signatures differed between fearful and angry faces in both 
anxious and non-anxious children for region #41. When distinguishing neural activity between fearful and 
angry faces, we were able to achieve an accuracy of 97% with a linear SVM, but only after applying functional 
alignment (probabilistic SRM) to the brain scans of all children. This suggests that fearful and angry faces are 
highly dissociable when projected onto a common shared space. Functional alignment can provide enhanced 
predictive power because it automatically reduces the feature space, while aligning the vectors between subjects 
to a shared common representational  space25. We then trained a linear model to make individual predictions 
from both of our previous models in a four-class classification task that predicted the disease state and the type 
of facial stimuli simultaneously. Here, we achieved an accuracy of 73%, suggesting we can identify both neural 
signatures of anxious children and how they process fear and angry faces.

Due to the diverse structure and connectivity to a number of regions, the putative role of the TP has been 
inconsistent and subject to significant  debate10,34,35. The TP has been proposed as a social-emotional cognition 
hub that receives various sensory inputs from limbic structures to organize social  processes34. Emotional facial 
processing is a particular type of social process, and young children suffering from anxiety seem to show func-
tional dysregulation in related key limbic structures such as the amygdala and the  PFC15,19. Our results show 
that the TP also plays a crucial role in facial processing in children. Using only the neural correlates in the TP, 
we were able to make individualized predictions about which children suffered from anxiety using a non-linear 
machine learning model. This suggests that altered functionality exists in this region during a facial processing 
task involving negative or threat provoking stimuli. This is a novel finding in relation to pediatric cases of anxiety.

Neuroanatomy of the temporal pole (TP). The TP lies between the O-PFC and the  amygdala10, sitting 
near the anterior end of the temporal lobe, rostral to the perirhinal cortex. It has significant neural connections 
with the amygdala and PFC via the uncinate fasciculus, making it a paralimbic  region10,36. Although it is known 
for processing language, functionality surrounding the TP has also been linked to facial, emotional, and social 
processing, but it still remains largely  understudied37. Below, we present findings in neuroanatomical studies in 
macaque monkeys, showing patterns of connectivity similar to those exhibited in the human  brain38–40. Addi-
tionally, the TP is anatomically close to (and highly connected to) other areas related to facial and socioemo-
tional  processing10.

Evidence of socioemotional processing in the temporal pole. Using data from macaque monkeys, 
Kondo, Saleem & Price (2005) hypothesized that the TP modulates emotional functions related to salient per-
ceptual stimuli based on anatomical  connectivity41,42. The ventral region receives input from visual processing 
centers and is considered to be an endpoint in visual processing in  macaques41. Neurons in this region respond 
to complex stimuli and change in activity related to visual memory  tasks38. In humans, neuroimaging tasks have 
shown that neurons in the TP also responds to complex visual stimuli such as faces. Studies of visually evoked 
negative emotions, such as fear and anger, have observed changes in activity of the right-ventral region of  TP43,44. 
Right-lateralized regions of TP have been implicated in high-level sensory representations with emotional and 
social experiences, while left-lateralized regions have been associated with linking semantic memory to high-
level representations such as  faces10. Specifically, damaged left TP studies revealed deficits in proper naming 
abilities and face-name associative learning  tasks45,46. Additionally, epileptic damage to the right TP has resulted 
in higher prevalence of anxiety and depression disorders compared to the left  TP45. Here, it is evident that the TP 
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plays a role in processing emotionally balanced facial expressions. In childhood anxiety, this cognitive process 
is compromised. Research remains focused largely on amygdalocentric systems, but our results suggest that the 
activity of right TP alone enables distinctions between anxious and non-anxious children.

As outlined above, research into neural aspects of socioemotional processing has focused mainly on areas 
such as the amygdala and the prefrontal cortex, not the TP. It has not received the same attention as the amyg-
dala and PFC in emotion  studies10. In addition, the awkward anatomical placement of TP near the air-tissue 
boundaries of the sinuses is associated with weaker BOLD signals, making it difficult to draw consistent and 
statistical significance from fMRI  measures47. Nevertheless, in our study, the right TP revealed neural differences 
in socioemotional processing of facial stimuli in anxious and non-anxious children.

Implications in childhood anxiety. Since 2000, a number of neuroimaging studies have found deficien-
cies in facial-emotion recognition among individuals suffering from anxiety. In most cases, research has focused 
on two brain regions—amygdala and PFC—when examining distinct functional differences in anxious indi-
viduals while viewing emotional  faces45–48. Cognitive schema theories suggest that negative or threatening faces 
receive preferential and early processing advantages through these parts of the brain. It is known that rapid, direct 
processing of rudimentary sensory stimuli from the thalamus can reach the amygdala in short  succession49,50, 
and the amygdala also receives sensory input from indirect pathways such as the PFC, where it assigns signifi-
cance to the sensory stimuli based on context and prior experiences. This pathway reaches the amygdala in a 
slower fashion, but conveys higher-order representations and is relevant for memory  consolidation51. Top-down 
modulation of this pathway may exert inhibitory influences on the amygdala. In adolescent anxiety, modulatory 
pathways may become dysregulated, allowing the amygdala to become hyperactive. Numerous studies have cited 
the PFC-amygdala network in emotional facial processing  tasks47,49,52,53. While this area is relatively well-known 
to be implicated in childhood anxiety, it is not the only area where functional differences may be observed.

In trying to conceptualize the functional relationship between anxiety and facial emotional processing, the 
TP should be considered. American neuroscientist Joeseph LeDoux argued the notion that the amygdala is the 
fear center of the brain. Instead, he posited that conscious fear is a cognitively assembled experience, derived 
from many other brain regions, which is not to be confused with the amygdalocentric, non-conscious process 
of detecting and responding to  threats54. Additionally, several theories on emotional processing have moved 
away from the notion that the amygdala is part of a dedicated and prioritized network for assigning emotional 
valance to ecologically salient  stimuli55. Revised hypotheses posit that the amygdala is a modulatory center with 
wide-ranging networks to other brain areas. Thus, it may be responsible for processing information related to 
salience, significance, ambiguity and uncertainty, assigning biological value to external  stimuli55–57. Others have 
cited the amygdala as part of a “whole-brain phenomena” for constructed  emotions58. One author postulated 
that the dynamics of the amygdala is used to make predictions of the external world rather than react to it. This 
is done in the service of allostasis (an organisms’ attempt to efficiently ensure resources for physiological systems 
in order to survive and reproduce)58,59. Emotions serve as constructions or predictions of the external world. 
They are part of an integrated system that mobilizes the brain and the body to ensure allostasis is maintained. 
Thus, the amygdalocentric view of emotional regulation should be revised to include a wider array of brain 
regions, such as the TP.

Few studies have focused on paralimbic regions such as the TP and its connectivity to the amygdala, perhaps 
due to its later, high-level processing onset of complex stimuli. As mentioned earlier, the TP is (1) heavily con-
nected with the amygdala, (2) responsible for processing complex visual and auditory stimuli, and (3) has been 
shown to integrate social and emotional significance to said stimuli. Together, these areas are a part of a larger-
scale, resting-state brain network known as the affective  network33. This network has been implicated in vari-
ous anxiety disorders where individuals are characterized by hyper-arousal, heightened worry states, increased 
sensory processing and poor emotional  regulation28. Our connectivity analysis provides strong evidence that the 
affective network is at play in adolescent children. Not only was the TP a strong predictor of childhood anxiety, 
but it also showed strong correlational patterns with other affective network regions such as the amygdala, STG, 
the orbital frontal cortex (OFC), and the border of the insula (Brodmann area #45) as seen in Fig. 5 (right) and 
Table 2. In addition, anxious individuals exhibited strong correlations for neural activity between the TP and 
visual cortical areas such as the occipital cortex and the fusiform gyrus. These regions have been linked to the 
perception of emotion in facial  stimuli60. Although the affective network domain is based on resting state brain 
paradigms, similar regions in our task based study were identified by our model. Regions within the affective 
network seem to show the greatest discriminative power between anxious and non-anxious children. This only 
reinforces the notion that the TP must be examined in more detail, as it is part of a larger affective network that 
regulates emotional and perceptual stimuli.

Various brain studies have focused on functional and structural differences in the bilateral TP between dif-
ferent populations during emotional stimulus tasks. While none have emulated the paradigm we have presented, 
certain parallels exist to confirm our findings. From a social and emotional standpoint, some fMRI and PET 
studies have shown activation of the TP in such tasks. Bilateral activation of the TP has been seen in negatively 
valenced films inducing  sadness61,62, and right TP activation has also been noted in viewing sad and angry  faces63. 
Recalling past anxious and angry experiences have shown bilateral activation as  well64. This suggests that emo-
tionally valenced stimuli do operate within the TP. In our study, we applied functional alignment techniques to 
better distinguish between various emotional stimuli such as fear and anger in anxious and non-anxious children. 
Our goal here was to further examine whether types of emotional stimuli differ in their neural signatures between 
groups in the TP. Using only this region, we were able to distinguish diagnostic labels using the emotional stimuli 
of fearful and angry faces. This implies that anxious children process fearful and angry faces differently from 
each other, and they also process these emotions differently from non-anxious children.
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While few studies have been conducted on children with anxiety, there are a few sources that cite the TP. 
A study focusing on group-level differences between SP and GAD in young adults with SP showed increased 
BOLD activity in the TP and the amygdala when responding to fearful faces compared to young adults with 
GAD and the control  group65. The GAD group showed increased activity for angry faces in Brodmann area #10 
(which includes part of the PFC) and the middle frontal gyrus, but showed a decrease in activity for the amygdala 
compared to SP and control groups. The authors concluded that the amygdala was not a sufficient area alone to 
distinguish group and stimulus level differences in young adults with SP and GAD, recommending that other 
areas be examined as  well65. A meta-analysis on SAD in adults revealed abberant activity in affective and default 
mode network regions such as the right TP, insula, PFC and the precuneus. The authors provided evidence that 
cognitive processes such as self-referential processing and Theory of mind are linked to these brain regions in 
SAD  adults66. Lastly, a resting-state MRI study that analyzed the functional connectivity between the amygdala 
and the TP in GAD patients revealed some interesting  caveats67. Compared to the control group, GAD patients 
revealed an increase in functional connectivity between these regions. They contend that this altered connec-
tion may contribute to the etiology of GAD in older patients. Our study confirms the same findings, except for 
children. Based on our connectome analysis, anxious children had a higher correlation between the right TP and 
the amygdala as well as the PFC, while non-anxious children did not. This may reveal that innervation’s between 
the TP and other limbic regions may manifest in young children, and remain into adulthood.

One looming question that remains is the progression of anxiety and its relation to TP as an individual enters 
adulthood. Specifically, how does the TP affect social and cognitive abilities for a child entering adulthood with 
clinical anxiety? One premise to consider is Theory of mind and how dysregulated socioemotional processing 
can result in a failure to respond adequately to social  interactions10. The inability to properly assess emotional 
faces and information of others could result in reduced positive and rewarding emotions after a social interac-
tion, leading to maladaptive  behavior68. A review on SAD in adults showed strong correlations between abberant 
self-referential processing, Theory of mind and subsequent dysfunction in sub-cortical brain regions such as 
the  TP66. Additionally, adults with damage to the right TP have exhibited introversion and coldness, perhaps 
due to the failure to derive pleasure from social  interactions69. Reinforced behavior to partake in socialization 
may be reduced and persist into  adulthood70–72. This trend has been seen in disorders such as Attention-deficit 
hyperactivity disorder (ADHD) and autism (ASD)73,74. In non-clinical groups, children who benefit from accu-
rate cognitive reappraisal and theory of mind go on to show linear, or even quadratic increases in activity in 
areas such as the right TP as they move to  adulthood68. While it is difficult to ascertain if the TP directly causes 
socioemotional dysregulation into adulthood for anxiety, the fallout from poor theory of mind may persist into 
adulthood. Anxiety disorders are among the most persistent mental health disorders propagating from adoles-
cence to adulthood, with a core criteria of symptoms centered around social and emotional  processing75. It may 
be that dysregulation of the right TP in childhood anxiety may proliferate into adulthood.

Currently, there is no validation or diagnostic procedure that involves any component other than clinical signs 
and symptoms via psychiatric assessment. Although neuroendocrine, cognitive, genetic, and neuroanatomical 
correlates exist, there is no available biological test for diagnosis. Here, we used a facial processing fMRI task 
to not only classify anxious from non-anxious children, but to also distinguish between the affective stimuli 
presented. Instead of using a multi-variate strategy to examine whole-brain neural patterns, we focused on one 
particular region, which has been implicated but understudied in anxiety and socio-emotional processing. The 
TP served as an anatomical region that could predict which children suffered from anxiety based on the neural 
correlates of fearful and angry faces.

Limitations and future work. One future consideration is to conduct a meta-analysis to other studies of 
anxious children or adults. As mentioned, there are few papers focusing on the temporal pole as a region that 
could be implicated in anxiety. If data is available, validating our model on adult cases could yield interesting 
findings. Another consideration is to test our model on a separate cohort dataset with more subjects. Ideally, 
evaluating the performance of our proposed approach could benefit from a more homogeneous target group. 
Since our target group contained children with 3 different types of anxiety disorders (co-morbid disorders as 
well), the variance between the neural signatures of these children may have differed significantly. There is evi-
dence that SP, GAD, and SAD show different neurological and behavioral patterns between each  other65,76,77. 
Thus, confounding effects may exist within the anxious group that could affect the overall performance accuracy. 
However, comparing SP, GAD, and SAD is out of the scope of this paper. Another limitation may be that func-
tional alignment could result in high accuracies in other areas than the TP for our secondary analysis. The TP 
was critical for the primary analysis classification, but was comparable to other brain regions in the secondary 
analysis after functional alignment was applied. Another future consideration could involve transfer learning, 
a machine learning technique that involves training with one type of labeled data (i.e., train a model using only 
GAD participants), then applying that model on other classes (SP or SAD children) to examine whether the 
model can correctly distinguish cases based on the prior knowledge of only GAD children. Another potential 
limitation was the absence of other facial stimuli in the task. Carpenter et al., (2015) only released functional 
scans with fearful and angry faces for the purposes of their  study77. Thus, we had to focus on negative stimuli 
only, and although we successfully distinguished fear from angry faces in the brain, other facial stimuli may offer 
further insights into how emotion is processed in the brain of anxious and non-anxious children.

Conclusion
In summary, the goal of this study was to use a data-driven approach to classify anxious versus non-anxious 
children using emotional facial stimuli. Here, we used a super learner (AdaBoost with logistic regression as a base 
estimator) to select the Talairach regions that could best distinguish anxious from non-anxious children. Our 
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model achieved an accuracy above 81% for this task. Subsequently, we examined how different negative emotional 
faces would be processed in both groups. We found that fear and angry faces could clearly be distinguished in 
the TP, but only after functional alignment was applied to the brain scans of all subjects. This study illustrates 
the power of task-based fMRI designs to predict disease states and stimulus conditions. It also indicates that the 
TP is a region that should be further examined in pediatric anxiety. Cognitive processes such as emotional facial 
processing may be compromised in anxious children. We have demonstrated that machine learning analysis of 
face-processing, task-related fMRI data may be used to distinguish anxious from non-anxious children. This 
may enable further understanding of neural underpinnings of pediatric anxiety and help to extend and validate 
diagnostic labels used by psychiatrists and other clinicians.

Methods
Data and code. This paper analyzed data provided by Carpenter, K.L., Angold, A., Chen, N.K., Copeland, 
W.E., Gaur, P., Pelphrey, K., Song, A.W. and Egger, H.L. (2015), who posted their data-set on https:// openn euro. 
org. The link to the data repository is https:// openn euro. org/ datas ets/ ds000 144. Their data was made publicly 
available on 2018-03-2677,78. All analysis can be replicated using our GUI-based toolbox, easy fMRI. The GitLab 
repository can be found and cloned at https:// easyf mri. learn ingby machi ne. com/.

Recruitment. Secondary analysis of existing data was obtained from Carpenter et al., (2015). Children were 
initially recruited from the Duke Preschool Anxiety Study (DPAS), which was a longitudinal, multi-phase study. 
The last phase was entitled “Learning about the Developing Brain study” (LABD), where 208 children who 
participated in previous phases of the DPAS were recruited to take part in this study, which examined brain 
development in children suffering from anxiety. Of the 208 children, 155 were eligible to participate in the neu-
roimaging phase. Children who met the criteria for generalized anxiety disorder, SP, and/or SAD were recruited 
into the “case” group, and children who did not meet the criteria for an anxiety disorder were recruited as the 
comparison group. Children in the LABD were not excluded for comorbid non-anxiety disorders or for taking 
psychotropic  medications77.

Parents completed the Preschool Age Psychiatric Assessment (PAPA) for children involved in this  study79. 
The PAPA is a diagnostic instrument for assessing psychopathology of children aged 2–9, and it is based on the 
parent version of the Child and Adolescent Psychiatric  Assessment77,80. Frequency, duration, and the onset of 
symptoms are collected to determine whether the child meets the diagnostic criteria for anxiety disorders in the 
Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). The PAPA assesses symptom severity during 
the previous 3 months, as shorter recall periods have been shown to reflect more accurate  recall80. A composite 
score of GAD, SP, SAD, and depression symptoms were obtained from the PAPA and was used as a measure of 
school-age emotional  symptomatology77.

This study was approved by the Duke University Medical Center Institutional Review Board, and was carried 
out in accordance to U.S regulatory requirements related to the protection of human research participants, which 
include the Accreditation of Human Research Protection Program (AAHRPP) and the Health Insurance Port-
ability and Accountability Act (HIPAA) guidelines. Verbal assent from the child and informed consent from the 
parent were obtained after a full description of the study was presented. Children and parents were financially 
compensated with gifts. or money  vouchers77.

Participants. Children eligible for the fMRI study had to meet 3 requirements: (1) They completed the first 
phase of the DPAS study, (2) they must be older than 5 and half years old, (3) have successfully completed a mock 
scan session in the MRI machine. Children were placed into one of two groups. The first group involved anxious 
children, who met the criteria for GAD, SP SD, or some combination of the 3 using the PAPA questionnaire, and 
non-anxious children who served as a control group. Of the 155 children initially recruited, only 45 had usable 
data due to a number of reasons including parents or child refusal to take part, absentees, excessive motion in 
the scanner, and lower  IQs77. Of those 45 children, 22 were in the anxious group and 23 were in the non-anxious 
group. The anxious group contained individuals with either one or more anxiety disorders. Within the anxious 
group, 15 children met the criteria for GAD, 11 for SP, and 10 for SAD. 12 out of 22 anxious children met the cri-
teria for more than one anxiety disorder. The age range of both groups was between 5.5–9.5 years old, as seen in 
Table 1. Impairment and emotional symptoms were recorded prior to the start of the fMRI study and were rep-
resentative of psychiatric symptoms that interfere with daily functioning. Impairment scores were assessed using 
the World Health Organization’s International Classification of Functioning, Disability, and  Health81. Emotional 
symptoms were measured on a composite scale that accounted for both anxiety and depressive  symptoms77.

Functional MRI task. The fMRI task was a block design, emotion face processing task. Facial stimuli from 
the NimStim Stimulus Set were selected (45), but only angry and fearful faces were used according to Carpenter 
et al., (2015). Each subject completed 2 blocks. At the beginning and end of each run, there was a 16-s fixation 
block and 15-s task blocks were stationed in between and separated by 12-s baseline fixation blocks, which con-
sisted of a colored star in the center of the screen. Faces were shown for 1.25 s with no inter-stimulus interval. 
Each run contained 3 blocks of fearful and angry faces exclusively, with the order of the emotional faces ran-
domized. To make sure the children were staying engaged, they were instructed to press a button whenever a 
face with glasses was shown on screen. These faces were randomly placed throughout the blocks and expressed 
the same emotion as the other pictures within the block. The average task accuracy was 83.33% for non-anxious 
children and 82.29% for anxious children. The study used a block-design fMRI scheme in which all partici-
pants viewed the same number of stimulus presentations and consistent interstimulus intervals. This experiment 
scheme allowed us to extract 35 time points (based on our design matrix) for each participant during preproc-
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essing. Further, these time points were also temporally aligned to ensure m th time point for all participants 
represented the same type of stimuli.

MRI acquisition. MRI acquisition was completed on two different 3T GE scanners. Of the 45 participants, 
15 (8 anxious, 7 non-anxious) were scanned using the EXCITE HD system, and 30 participants (14 anxious, 16 
non-anxious) were scanned on the MR750 system. Parameters and pulse sequences were congruent between the 
two systems, and calibration metrics such as spatial accuracy and dynamic signal stability were validated using 
an agar phantom (soft tissue mimic). In both systems, scans lasted 5 minutes and 44 seconds and 172 functional 
images were generated during the task. For each run, between 34–39 slices were generated which were parallel to 
the AC-PC plane using a BOLD-sensitive EPI sequence (voxel size: 4 mm3 ; Repetition time: 2000ms; Echo time: 
27ms; Field-of-view: 24 cm; Flip-angle: 77; Interleaved-odd acquisition)77. Co-registering the functional images 
was done in conjunction with a high resolution T1-weighted anatomical scan using the 3D-FSPGR sequences 
with SENSE (voxel size: 1 mm3 ; Repetition time: 8.096ms; Echo time: 3.18ms; Inversion time: 450ms; Field-of-
view: 25.6 cm; Interleaved-odd acquisition)77. Batch effects were recorded as a covariate in the machine learning 
analysis to ensure manufacturing differences between the two systems were not a cause of functional differences.

Pre‑processing. Data was pre-processed and analyzed using Easy fMRI (version 1.8B8800) (https:// easyf 
mri. github. io) and FMRIB Software Library (FSL version 6.0.3). We have used the “fMRIPrep”  pipeline82,83—
which includes brain extraction, registration to standard space, motion correction, slice time correction, nor-
malization, and spatial smoothing. To prepare the images for registration, we first used the Brain Extraction Tool 
(BET) to eliminate non-brain tissues such as the scalp and brain marrow. We then registered all the subject’s 
brain images to a common reference coordinate system using the MNI-152, 2 mm resolution (T1 weighted) 
standard space. To anatomically align the brain images, we used an affine (12 degrees of freedom, 12 DOF) 
transformation to rotate, translate, and scale the images into  alignment84. Motion correction was also handled in 
this affine transformation. Due to movement in the scanner, we needed each voxel to correspond to a consistent 
anatomical point for each point in  time84,85. Here, we chose to use the first image in the time frame to reference 
all other volumes at other time points. Fortunately, the dataset we acquired already removed excess motion 
subjects. Carpenter et al., (2015) removed relative and absolute motion and intensity jumps greater than three 
standard deviations from the run mean as part of their scrubbing protocol. The mean of runs was determined by 
taking the absolute deviation relative to the mean of runs after each voxel was passed through a high pass filter to 
remove low-frequency drifts (1/60 Hz)77. Task blocks were removed from analysis if two volumes were removed 
from the start of the block or more than 3 volumes in total were removed from the block. Additionally, the entire 
run was excluded from subsequent analyses if more than one block of emotional stimuli was  removed77. Next 
was spatial smoothing. Spatial smoothing is a method used to increase the signal-to-noise ratio in fMRI brain 
volumes. Smoothing was done by using a 3D convolution with a Gaussian kernel to replace voxel intensities with 
a weighted average of neighboring intensities. We specified our Full-Width-Half-Maximum (FWHM) kernel 
to be 5.0 mm. After, we applied a global intensity normalization between subjects and sessions. Lastly, we used 
temporal filtering, which is a removal of high and or low frequencies in the raw signal of voxel intensities via 
band-pass filters. In a time series of each voxel, there may be scanner related or physiological signals that cause 
high-frequency noise.

Analysis: Anxious versus non‑anxious classification. Machine learning analysis. Using the Ta-
lairach atlas (with 2mm voxel size), we used a super learner (SL) that segmented brain regions (959) and used 
them as hyper-parameters to examine which areas could best separate our diagnostic labels. Figure 1 illustrates 
the full machine learning pipeline for our primary analysis. All machine learning analysis was done using Py-
thon 3.986 or in Easy  fMRI83. Subsequent libraries included scikit-learn (version 0.23.1)87, SciPy (version 1.6.1)88, 
 Pandas89, and Numpy (version 1.20.1)90.

A SL is seen as an “ensemble of ensembles” that combines models or model configurations on the same 
split of data, and then uses out-of-fold predictions to select the best configurations or  models91. We applied the 
whole-brain data to a SL—where it parcellated the neural responses based on the Talairach atlas and then found 
an optimal prediction model for each of the regions. The SL returns the model which can best distinguish class 
labels (anxious versus non-anxious). The SL would make a prediction on every time point for each subject (35 
time points), then use a majority vote to make a final prediction for the class label associated with that individual, 
regardless of task stimuli. We split the data using fivefold CV based on the participant IDs (36 / 45 participants 
were considered our training set, and 9 / 45 our testing set). The SL used a nested cross-validation process, 
whereby the outer CV process used 4/5ths of the participants for a training set (balanced for diagnostic labels), 
and 1/5th for a testing set. Within the training set, another 5 fold-CV was used to fine tune the hyper-parameters 
within the SL. Folds were split based on the participant ID instead of time points (30 / 36 participants were in the 
training set, and 6 / 36 were in the validation set). An ensemble classifier (AdaBoost) with a logistic regression 
base estimator was used to make the predictions on each participant.

AdaBoost (short for Adaptive Boosting) is an ensemble machine learning paradigm where multiple models 
(often called “weak learners”) are amalgamated in such a way to achieve more robust  results91. This is done by set-
ting weights for both the weak learners and the data points. The algorithm forces the weak learners to concentrate 
on observations that are difficult to classify correctly. AdaBoost uses boosting, a sequential ensemble process that 
gives misclassified cases a heavier weight, samples without replacement, and reduces the bias-variance tradeoff 
by combining weak or shallow learners together in a voting process to make  predictions91. We used four hyper-
parameters to tune our classifier within the inner CV. Hyper parameter tuning was done using GridSearchCV, 
a function within Scikit-learn87. First, we used a different number of estimators [n_estimators = 10, 50, 100, 
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150] to determine the maximum number of estimators at which boosting is terminated. Second, we adjusted 
the learning rate [learning_rate = 0.05, 1, 2]. Third, we changed the number of max iterations completed by 
AdaBoost [max_iterations = 100, 500, 1000]. Next, we tuned the type of regularization performed by the logistic 
regression estimator [penalty = L1, L2, none]. This was also coupled with the regularization penalty variable [C 
= 0.5, 1, 2]. Lastly, we used the segmented regions from the Talariach atlas as a hyper-parameter. We evaluated 
the performance of our results by using the accuracy, which was computed as the average accuracy across the 
folds in the outer CV. We used precision, recall and F1-score to evaluate the final model.

Statistical analysis of top region(s). We conducted a high level, between-group analysis for the ROI selected to 
examine activation differences for anxious versus non-anxious children. Instead of using a regular classifica-
tion analysis, we conducted a grouped Bayesian representational similarity analysis (GBRSA) that can compare 
the (dis)similarities between different cognitive states across multiple participants. This was done to determine 
whether the pattern of activity between anxious and non-anxious children were statistically different in region 
#41.

RSA is a similarity fMRI analysis method that explores the neural response patterns of brain regions across 
different stimuli or different  groups92,93. Using a measure of similarity or dissimilarity (1-measure) such as 
euclidean distance, Spearman’s correlation or Pearson’s r, neural activity regarding stimuli can be compared to 
each other, resulting in a representational (dis)similarity matrix (RSM or RDM)93. From there, non-parametric 
statistical tests can be conducted to compare neural activity across stimuli, groups or  both92. In our case, we 
used a between-group analysis of anxious and non-anxious children, regardless of what stimuli they examined.

Traditional RSA has been widely adopted in cognitive neuroscience, but suffers from some confounding 
factors. Mainly, similarity metrics tend to be much higher when neural patterns are in close temporal prox-
imity, which can conflate  results94. Secondly, traditional RSA can result in unstable (bias) analysis when the 
signal-to-noise ratio is low for some sets of  data94,95. GBRSA is a Bayesian extension of RSA that can address 
the mentioned issues. While RSA uses deterministic approaches (e.g., general linear model or ordinary least 
squares) to estimate the similarity between the neural responses, GBRSA uses the maximum likelihood estima-
tion (MLE) to learn hyper-parameters of a distribution for the neural responses of each subject—while a single 
covariance matrix is used across all subjects to maximize the joint probability of observing neural responses. we 
use a shared covariance  matrix95. So, GBRSA improves on these issues by reducing the temporal and covariance 
bias—i.e., learning the covariance structure as a hyper-parameter. By reducing the unknown activity patterns 
across anxious and non-anxious children, a direct estimation can be made from the covariance  matrix94. Once 
generated, we measured neural activity in the TP to determine whether either group differed from each other 
using a Mann-Whitney U-test, which does not assume our neural activity has a normal distribution. Analysis for 
GBRSA was done in Easy fMRI and  Python86, which included the library SciPy to conduct the Mann-Whitney 
U-test88. Brain images seen in Fig. 5 were done using Analysis of Functional NeuroImages (AFNI_21.1.01), 
Surface Mapping (SUMA) and Easy  fMRI83,96,97.

Fully connected network analysis. Lastly, we wanted to look at a fully connected network analysis between the 
highest selected region and all other regions. To do this, we first partitioned the raw neural activities between 
anxious and non-anxious children. Next, neural activities were further partitioned based on 959 regions of the 
Talairach atlas. We then averaged the neural activities within each Talairach region across all voxels—which 
resulted in a vector with the same size as our time points. After, we compared each of these vectors by calcu-
lating the absolute value of the correlation in a similarity matrix. We then applied a threshold to examine the 
most correlated regions (top 30%). Finally, we visualized both of the anxious and non-anxious networks and 
only showed the top connections with our highest selected region. This was done to examine whether our ROI 
showed different neural connections to different areas of the brain in anxious and non-anxious children, regard-
less of facial stimuli.

Analysis: Negative facial stimuli. Model classification of fearful versus angry faces. We also sought to 
distinguish fearful versus angry faces among the neural activity of all children with our ROI. For between-sub-
ject comparisons, tasks such as pattern classification or RSA yield lower accuracies because the representational 
spaces are highly dimensional, the functional topography may be different between subjects and anatomical 
brain structures vary between participants. Thus, a recent method known as functional alignment has been 
proposed to align patterns of neural responses across subjects into a common, lower-dimensional  space25. One 
important assumption is that we assume all human brains have similar neural activity for experiencing the same 
categorical stimuli. Here, we used a probabilistic shared response model (SRM) to functionally align neural 
activity for fearful and angry faces for all subjects only in our region of  interest98.

SRM uses the training data to learn the mappings for each subject’s data shared feature space. Then these 
learned mappings are projected onto the held-out data for each subject into a shared feature space. One of the 
main distinctions in SRM is that the model directly estimates that the selected shared features are significantly 
less than the number of voxels it is selecting from. This is different from other methods, where the number of 
features usually equals the number of  voxels98. The machine learning pipeline for our negative stimuli analysis 
can be seen in Fig. 6. Analysis for SRM was conducted in Easy fMRI.

Once we obtained the functionally aligned dataset for the facial stimuli, we trained a linear SVM classifier 
on the ROI. Here, instead of using a non-linear model (such as AdaBoost in the primary analysis), we opted for 
a linear model instead. First, our intuition was that—since functional alignment maps the neural responses for 
our facial stimuli to a linear feature space, using a non-linear model would increase the chance of over-fitting. 
Thus, we followed Occam’s razor and opted for a simple, linear model to prevent this issue. Secondly, using a 
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linear model has reduced computational time compared to non-linear models. Fivefold CV was used, but with 
no internal CV approach this time. Also, no majority vote was used for final predictions. Instead, each time point 
was individually predicted, and metrics such as accuracy, precision, recall, and F1-score were averaged across 
each time point between all subjects in the testing folds.

Multi‑class classification. Taking the final predictions from both our analysis models, we sought to make a 
four-class classification model that predicts the diagnostic stimuli (anxious versus non-anxious) and the type of 
stimuli (fearful versus angry faces) in a post-hoc analysis. Using the final predictions from the trained AdaBoost 
classifier (anxious versus non-anxious) and the linear SVM (fearful versus angry faces), we generated new pre-
diction labels based on the original class and stimuli labels and compared them to the observed labels. A one way 
ANOVA was conducted to examine differences in precision between the 4 classes. This can be seen in Fig. 7C.
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