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Task-based fMRI analysis



functional Magnetic Resonance Imaging (fMRI) machine
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Representational (or Vector) Space

Algebraic Representation Geometric Representation
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Let d=1...D be the number of sites

S, is the number of subjects in d-h site

Let T, be the number of time point in d-th site

V'is the number of voxel

The brain image for s-h subject in d-th site: X(4#) ¢ RT+<V
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Multi-subject fMRI dataset
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Multi-subject fMRI dataset
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Multi-subject fMRI dataset

Stimuli Subjects An fMRI Scanner Neural Responses X(@s)
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Multi-subject fMRI dataset

Stimuli Subjects An fMRI Scanner Neural Responses X(@®) Common Feature
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Pattern vector trajectories for 2 subjects in a 2-voxel representation space
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This slide is part of [Haxby, 2011] talk in Dartmouth College
Link https://youtu.be/jaR9PmlalPs Subject 1 Subject 2
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Single-site functional alignment for multi-subject fMRI

> Generating the common space for each site:

Sd
jéd) ([X(d,s)]s;l...sd) — arg min Z HG(d,Sd) _ X(d,S) R(d,s)

R.(4:s) ,G(dﬂd’) s—1

2
)

F
45 (@S
subject to (G( k d)) Gb%) =1,

Let d=1...D be the number of sites

s=1...§ ,is the number of subjects in d-zh site

Let t=1...T  be the number of time point in d-h site
v=1...V 1s the number of voxel

We let k << V' be the number of components

The brain image for s-th subject in d-th site: X (ds) ¢ RTaxV

The mapping matrix for s-#4 subject in d-th site: R(%) ¢ RV*k

e The common space for d-th site: Gd51) ¢ RTaxk



An insight for the optimization procedure

e We define the regularized projection (hat) matrix for s-t4 subject in d-th site:
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An insight for the optimization procedure
e We define the regularized projection (hat) matrix for s-t4 subject in d-th site:
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An insight for the optimization procedure
e We define the regularized projection (hat) matrix for s-t4 subject in d-th site:
plds) — x(ds) (X(d,s) (X@)T 4 EITd)‘l (X @)
e We also define the mapping matrix for s-t4 subject in d-th site:
R(®s) = (x@s) (X)) " 4 GITd)»l (X)) a5 s —1...8,

e By these assumptions, we can rewrite the objective function only based on the
common space:

. S,
argmin )77,
R(%) G5

‘G(d,sd) — X(d’s) R(d)s)

izargmax(tr(( ds"’) ZS‘* pds) g(dSa) ))

G(@5q)

e We can calculate the common space by solving an eigendecomposition problem



Multi-site fMRI analysis
Our SSTL algorithm



Multi-site fMRI analysis
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Multi-site fMRI analysis
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SSTL: Motivation

> Challenging issues in most fMRI studies:
o High-dimensionality and noisy
o Expensive to collect with small sample sizes
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o High-dimensionality and noisy
o Expensive to collect with small sample sizes

> We CANNOT use single-site methods for effectively analyze multi-site data:
o Temporal alignment: a unique time-point shows the same stimulus for all subjects
o Batch effects: a set of external elements that may affect the distribution of fMRI datasets
m The environment noise
m Standards that are used by vendors of fMRI machines



SSTL: Motivation

> Challenging issues in most fMRI studies:
o High-dimensionality and noisy
o Expensive to collect with small sample sizes

> We CANNOT use single-site methods for effectively analyze multi-site data:
o Temporal alignment: a unique time-point shows the same stimulus for all subjects
o Batch effects: a set of external elements that may affect the distribution of fMRI datasets
m The environment noise
m Standards that are used by vendors of fMRI machines

> Shared Space Transfer Learning (SSTL)

o Anovel Transfer Learning (TL) approach for multi-site fMRI analysis
o It can functionally align homogeneous multi-site fMRI datasets

o ItIS NOT LIMITED to overlapped datasets (i.e., share some subjects)
o It can improve the prediction performance in every site.



SSTL: Learning pipeline
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SSTL:

_earning pipeline

Site d=1
(with labels)

——p Common Space G (1>51)

Site d=2
(with labels)

N
‘\\\ el ettt
RN :
‘" e This site can have:
Y o different set of subjects
\ o different temporal alignment

o different vendors of fMRI machine

e BUT it must have homogeneous cognitive tasks
o all performing the same set of fMRI tasks



SSTL: Learning pipeline
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SSTL:

_earning pipeline
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Generating the Global Shared Space (training phase)

e We denote a concatenated version of all common spaces in the training set as follows:

G(lasl) ]
G(2’52)

G(B,Sg)

e We use linear Karhunen—Loeve transformation (KLT) for learning the global shared

space:
2

Y

T ¢ (G) = argv{’ninHG - GWWT‘

subjectto W'W =1,



SSTL: Algorithm



SSTL: Objective Functions

> STEP 1: Generating the common space for each site:

)

(d) ([X ds)]s_ ) —  arg min HG (d,5) _ x(dys) g (dss) i

R(d s) G(d Sd.)

-
subject to (G(d”s‘*)) G(d’sd) = Ij.

o  X@s) denotes the neural responses for s-th subject in d-th site
o R0 denotes the mapping matrices for s-th subject in d-th site
o G99 denotes the common space for d-th site

> STEP 2: Generating the global shared space
— 2
J a (G) arg minHG —~ GWW' H :
W F
subjectto W'W =1I.

o G denotes the concatenated version of all common spaces in the training set
o W s the global shared space



SSTL: Algorithm

Algorithm 1 Shared Space Transfer Learning (SSTL)

Input:

Training set [X(d‘s)]d=1.,.b ¥

Training labels [y(d‘s)] el g

Testmg labels [y (¢ q)]d=1...D.s=1...Sd’
Regularized parameter e,
Number of features k.

Output:

Classification Model IT,

Site-specific common features [G(%5¢)]
Global shared space transformation W,

and the model evaluation (accuracy, precision, etc.).

.D+D’

Method:
# Common Phase — must run for each dataset separately
0.D=D+D N
02. Initialize G(49 = {0}T2** and 3(49) = diag({0}*) ford =1...D.
03. Generate G(%54) and R(4%) ford =1...D and s = 1...S, by using (1) to (8).

04.

05.
06.
07.

08.
09.

# Training Phase
based on (9).

TL_(G = 1T/¢T)T (G - ].T/.LT) based on (12).

1

Concatenate G = [G(454)] | &

Calculate the second moment C =

Calculate W as eigenvectors of C.

Train a classification model H([X(d‘S)R(d‘S)W]dzl._.b'szlmsd, [y(d.S)]dzlA..b,szl...Sd)'
# Testing Phase

= H([X([I'S)R(d"s)w] 1...5.s=1...sd)'

R LA PR

Predict based on model [p*¥)],_, 5 | o

Evaluate accuracy of the model — i.e., [p(®

]d i (738 Ds 15 - P o e




Empirical Studies



Scheme of experiments: Algorithm

> \We compare SSTL with 6 different existing methods:
o Baseline:

m Raw neural responses in MNI space without using TL methods
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Scheme of experiments: Algorithm

> \We compare SSTL with 6 different existing methods:
o Baseline:

m Raw neural responses in MNI space without using TL methods
o Methods need pair-site subjects:

m Shared response model (SRM)

m Multi-dataset dictionary learning (MDDL)

m Multi-dataset multi-subject (MDMS)
o Methods based on general TL algorithms:

m Maximum independence domain adaptation (MIDA)

m Side Information Dependence Regularization (SIDeR)



Scheme of experiments: Datasets

ID Title (Open NEURO ID) Type Sq #1 Ty #2 #3
A Stop signal with spoken pseudo word naming (DS007) Decision 20 4 149 B,C B,C/D
B Stop signal with spoken letter naming (DS007) Decision 20 4 112 A,C A,CD
C  Stop signal with manual response (DS007) Decision 20 4 211 A,B A,B,D
D  Conditional stop signal (DS008) Decision 13 4 317 A,B,C
E  Simon task (DS101) Simon 21 2 302 F
F  Flanker task (DS102) Flanker 26 2 292 E
G Integration of sweet taste — study 1 (DS229) Flavour 15 6 580 H H
H Integration of sweet taste — study 3 (DS231) Flavour 9 6 650 G G

S is the number of subject; #1 is the number of stimulus categories; T} is the number of time points per subjects; #2 lists the other datasets

that overlap with this dataset; #3 lists the other datasets whose neural responses can be transferred to this dataset.



Multi-site classification analysis for pairs of datasets that overlap
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Multi-site classification analysis for sets of datasets that do not overlap
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Visualizing transferred neural responses
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Runtime
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Future Works



Conclusion

e We propose the Shared Space Transfer Learning (SSTL) as a novel transfer
learning (TL) technique that can be used for homogeneous multi-site fMRI

analysis.

e Our comprehensive experiments confirmed that SSTL achieves superior

performance to other state-of-the-art TL analysis methods.

e \We anticipate that SSTL's multi-view technique for transfer learning will have
strong practical applications in neuroscience --- such as functional alignment

of multi-site fMRI data, perhaps of movie stimuli.
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easy fMRI Data Editor

Data Edit
> =

1 # This is a template for writing any code in Python 3 style
2 # You can access to the data information as follows
3 # "data” as the variable in a dictionary format
4 # "root" as the current location in a queue format
5 import os
6 import sys
7 import numpy as np
8 import nibabel as nb
9 import scipy as sp

10

11 # Example 1: Print Variable Names

12 print(Ikey for key in data.keys()])

13 # Example 2: Print Current Location

14 print(list(root.queue))

15

New File

Covariance of Categories

o ¢
Data | Edit

General | Feature

- +)

Name
train_task
train_subject
train_run
train_nscan
train_mlabel
train_label
train_design
train_data
train_counter
test_task
test_subject
test_run
test_nscan
tact mlahal

easy fMRI Data Editor [ X

A 2

SUEC

Class Shape Value

ndarray 160, [array(['objectviewing'], dtype='<U13') ...
int64 160 [111111111111111111111...
int64 160 [111111111122222222221...
int64 160 [ 7 8 910 11 12 13 14 15 16 64
int64 160, 8 [[100..000][100..000][100
int32 160 [111111111111111111112
float64 160, 8 [[ 0.08114757 -0.02303865 0.0047743.
float32 160, 1963 [[ 719.5356 1583.7104 0. ... 8564
int64 160 [111111111111111111111
ndarray 160, [array(['objectviewing'], dtype='<U13') ...
int64 160 [222222222222222222222...
int64 160 [111112111.122222222221...
int64 160 [7 8 910 11 12 13 14 15 16 35...
intR4 160 R Mmoo onnlfinn onnlfion &

Address |/DATA/Links/zzzDATA/Datasets/Sample/RAWBalance/R105_fold1.mat

Correlation of Categories
Task: localizer
Sub: 1, Counter: 1, Run: 1

Task: localizer 0.70
Sub: 1, Counter: 1, Run: 1
4.0 4.0
35 0.65 -
3.0 3.0
0.60
2.5 2.5
2.0 0.55 2.0
15 15
10 0.50 10
05 05
0.45
0.0 0.0
0 1 2 3 4

Available at https://easyfmri.learningbymachine.com/
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https://easyfmri.learningbymachine.com/

easyX @

eaSyX: a Simple Python E Project ID: 20549491 QA v||sStar 0] ¥ Fork | 0

-0-10 Commits F 1Branch ¢ 0Tags [A) 143 KB Files [ 143 KB Storage

library for saving  Dig i e ome s
complex data structure

master easyx / | + v History Find file Web IDE | v & v

7876e€94b | [

i‘ fixing \\n issue for converting binary var by using base64

Muhammad Yousefnezhad authored 4 montt

Add CONTRIBUTING :

Name Last commit Last update
B3 LICENSE Add LICENSE 11 months ago
++ README.md README is updated 11 months ago
@ easyX.py fixing \\n issue for converting binary var by ... 4 months ago
& requirements.txt adding requirements.txt 11 months ago
[@ README.md

easyX: a simple Python library for saving complex data structure

This library enables you to save a Python dictionary with a complex structure to a single file. We have tested this library to save files in size 150
GB — i.e,, you need a computer with 155 GB memory.

. The procedure is simple. The library tries to save homogeneous tensors by using the regular algorithm that is used for Hierarchical Data Format

Aval Iable at 5 (HDF5). We will store them in a group called "raw." If the dictionary has other complex structures — such as another dictionary or

htt // tI b / f h d/ nonhomogeneous tensors — the library will first dump the bytes of data from memory and encode it in a base64 format. The encoded data will
DS z g I a - Com mvouse neZ a eaSVX be stored as a vector in a group called "binary." This library is originally developed for the easy fMRI project — a toolbox for analyzing task-

based fMRI datasets.
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challenging as the data is noisy, high-dimensional, and typically only small sample sizes (as it is expensive to acquire) Edmonton, Canada

Increased access to public neuroimaging datasets has motivated the field to investigate muilti-site datasets, which promise an improvement of accuracy 33 publications

rates in the application of advanced computational learning procedures (i.e., machine learning). However, forming a dataset by merely concatenating data
from various sites/sources often fails due to batch effects, where the accuracy on a dataset of a model trained on a multi-site dataset is often worse than
the accuracy of a model trained on that single site. A promising area for tackling these issues is that of domain adaptation techniques — e.g., transfer Daogiang Zhang
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Our Related Studies

e Functional Alignment

o  Supervised Hyperalignment [TCDS 2020]
o Deep Hyperalignment [N/PS 2017]
o Local Discriminant Hyperalignment [44A47 2017]

e Image/Video decoding from human brain:

o Perceived Image Reconstruction [/CONIP 2020]

o  Temporal Information Guided Generative Adversarial Networks [TCDS 2021]
e Mental Health

o  Predicting Pediatric Anxiety [Nature Scientific Reports 2021]

o Deep Representational Similarity Learning [Neuroinformatics 2020]
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