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Task-based fMRI analysis



functional Magnetic Resonance Imaging (fMRI) machine
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Algebraic Representation Geometric Representation

● Let d=1...D be the number of sites
● Sd is the number of subjects in d-th site
● Let Td be the number of time point in d-th site
● V is the number of voxel
● The brain image for s-th subject in d-th site:



Functional Alignment
single-site
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Pattern vector trajectories for 2 subjects in a 2-voxel representation space

Subject 1 Subject 2
This slide is part of [Haxby, 2011] talk in Dartmouth College
Link https://youtu.be/jaR9PmlaIPs

https://youtu.be/jaR9PmlaIPs


Single-site functional alignment for multi-subject fMRI
➢ Generating the common space for each site:

● Let d=1...D be the number of sites
● s=1...Sd is the number of subjects in d-th site
● Let t=1...Td be the number of time point in d-th site
● v=1...V is the number of voxel
● We let k << V be the number of components

● The brain image for s-th subject in d-th site:
● The mapping matrix for s-th subject in d-th site:
● The common space for d-th site:



An insight for the optimization procedure
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An insight for the optimization procedure
● We define the regularized projection (hat) matrix for s-th subject in d-th site:

● We also define the mapping matrix for s-th subject in d-th site:

● By these assumptions, we can rewrite the objective function only based on the 
common space:

● We can calculate the common space by solving an eigendecomposition problem



Multi-site fMRI analysis
Our SSTL algorithm
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○ Batch effects: a set of external elements that may affect the distribution of fMRI datasets

■ The environment noise
■ Standards that are used by vendors of fMRI machines
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■ The environment noise
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➢ Shared Space Transfer Learning (SSTL)
○ A novel Transfer Learning (TL) approach for multi-site fMRI analysis
○ It can functionally align homogeneous multi-site fMRI datasets
○ It IS NOT LIMITED to overlapped datasets (i.e., share some subjects)
○ It can improve the prediction performance in every site.



SSTL: Learning pipeline
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SSTL: Learning pipeline

Site d=1
(with labels)     Common Space

Site d=2
(with labels)

● This site can have:
○ different set of subjects
○ different temporal alignment
○ different vendors of fMRI machine

● BUT it must have homogeneous cognitive tasks
○ all performing the same set of fMRI tasks
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Generating the Global Shared Space (training phase) 
● We denote a concatenated version of all common spaces in the training set as follows:

● We use linear Karhunen–Loeve transformation (KLT) for learning the global shared 
space:



SSTL: Algorithm



SSTL: Objective Functions
➢ STEP 1: Generating the common space for each site:

○ X(d,s) denotes the neural responses for s-th subject in d-th site
○ R(d,s) denotes the mapping matrices for s-th subject in d-th site
○ G(d,sd) denotes the common space for d-th site

➢ STEP 2: Generating the global shared space

○ G denotes the concatenated version of all common spaces in the training set
○ W is the global shared space



SSTL: Algorithm



Empirical Studies



Scheme of experiments: Algorithm
➢ We compare SSTL with 6 different existing methods:

○ Baseline:

■ Raw neural responses in MNI space without using TL methods
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Scheme of experiments: Algorithm
➢ We compare SSTL with 6 different existing methods:

○ Baseline:

■ Raw neural responses in MNI space without using TL methods

○ Methods need pair-site subjects:

■ Shared response model (SRM)

■ Multi-dataset dictionary learning (MDDL)

■ Multi-dataset multi-subject (MDMS)

○ Methods based on general TL algorithms:

■ Maximum independence domain adaptation (MIDA)

■ Side Information Dependence Regularization (SIDeR)



Scheme of experiments: Datasets



Multi-site classification analysis for pairs of datasets that overlap



Multi-site classification analysis for sets of datasets that do not overlap 



Visualizing transferred neural responses 



Runtime

● SSTL uses a single-iteration optimization approach



Future Works



Conclusion

● We propose the Shared Space Transfer Learning (SSTL) as a novel transfer 

learning (TL) technique that can be used for homogeneous multi-site fMRI 

analysis. 

● Our comprehensive experiments confirmed that SSTL achieves superior 

performance to other state-of-the-art TL analysis methods.

● We anticipate that SSTL's multi-view technique for transfer learning will have 

strong practical applications in neuroscience --- such as functional alignment 

of multi-site fMRI data, perhaps of movie stimuli.



Available at https://easyfmri.learningbymachine.com/

https://easyfmri.learningbymachine.com/


easyX: a simple Python 
library for saving big 
complex data structure

Available at 
https://gitlab.com/myousefnezhad/easyx

https://gitlab.com/myousefnezhad/easyx


Research Topic on Frontiers in Neuroinformatics 

Multi-Site Neuroimage Analysis: Domain Adaptation and Batch Effects

https://www.frontiersin.org/research-topics/17960/multi-site-neuroimage-analysis-domain-adaptation-and-batch-effects

https://www.frontiersin.org/research-topics/17960/multi-site-neuroimage-analysis-domain-adaptation-and-batch-effects


Research Topic on Frontiers in Neuroinformatics 

Multi-Site Neuroimage Analysis: Domain Adaptation and Batch Effects

https://www.frontiersin.org/research-topics/17960/multi-site-neuroimage-analysis-domain-adaptation-and-batch-effects

https://www.frontiersin.org/research-topics/17960/multi-site-neuroimage-analysis-domain-adaptation-and-batch-effects


Our Related Studies

● Functional Alignment
○ Supervised Hyperalignment [TCDS 2020]

○ Deep Hyperalignment [NIPS 2017]

○ Local Discriminant Hyperalignment [AAAI 2017]

● Image/Video decoding from human brain:
○ Perceived Image Reconstruction [ICONIP 2020]

○ Temporal Information Guided Generative Adversarial Networks [TCDS 2021]

● Mental Health
○ Predicting Pediatric Anxiety [Nature Scientific Reports 2021]

○ Deep Representational Similarity Learning [Neuroinformatics 2020]
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