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Abstract—Understanding how the human brain work has
attracted increasing attention in both fields of neuroscience
and machine learning. Previous studies use autoencoder and
generative adversarial networks (GAN) to improve the quality
of stimuli image reconstruction from functional Magnetic Reso-
nance Imaging (fMRI) data. However, these methods mainly focus
on acquiring relevant features between two different modalities
of data, i.e., stimuli images and fMRI, while ignoring the
temporal information of fMRI data, thus leading to sub-optimal
performance. To address this issue, in this paper, we propose a
temporal information guided GAN (TIGAN) to reconstruct visual
stimuli from human brain activities. Specifically, the proposed
method consists of three key components, including 1) an image
encoder for mapping the stimuli images into latent space, 2) a
Long Short-Term Memory (LSTM) generator for fMRI feature
mapping, which is used to capture temporal information in fMRI
data, and 3) a discriminator for image reconstruction, which
is used to make the reconstructed image more similar to the
original image. In addition, to better measure the relationship of
two different modalities of data (i.e., fMRI and natural images),
we leverage a pairwise ranking loss to rank the stimuli images
and fMRI to ensure strongly associated pairs at the top and
weakly related ones at the bottom. Experimental results on real-
world datasets suggest that the proposed TIGAN achieves better
performance in comparison with several state-of-the-art image
reconstruction approaches.

Index Terms—Stimuli image reconstruction, functional Mag-
netic Resonance Imaging, long-short term memory, generative
adversarial networks

I. INTRODUCTION

HOW to understand human brain has been one of the
most significant problems in the field of neuroscience in

the past for a long time [1]–[4]. To this end, the topic called
human brain encoding and decoding is proposed, where the
encoding part embeds information into neural activities, while
the decoding part extracts information from neural activities
[5]–[7]. Functional Magnetic Resonance Imaging (fMRI) is
one of the most popular tools for studying the human brain,
using blood oxygen level dependence (BOLD) signals as a

S. Huang, L. Sun, M. Yousefnezhad, M. Wang and D. Zhang are with
the College of Computer Science and Technology, Nanjing University of
Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and
Machine Intelligence, Nanjing 211106, China.

†Corresponding author: D. Zhang (dqzhang@nuaa.edu.cn).
This work was supported by the National Natural Science Foundation

of China (Nos. 61876082, 61861130366, 61732006, and 62006115), the
National Key R&D Program of China Grant (Nos. 2018YFC2001600,
2018YFC2001602), the China Postdoctoral Science Foundation (No.
2021T140323), the Jiangsu Postdoctoral Science Foundation (No.
2021K419C), and also by the CAAI-Huawei MindSpore Open Fund.

proxy for neural activity visualization. The main idea of the
human brain encoding and decoding is to learn cognitive states
by measuring neural activities [8]–[10].

Compared with cognitive state classification tasks, recon-
struction of visual images can provide more details to under-
stand human minds, even though there are still great challenges
in obtaining the details of the stimuli images. Many studies
are developed to explore the stimuli image reconstruction. As
an early exploratory study, Thirion et al. [11] use rotating
Gabors to reconstruct dot patterns from stimuli and imagery.
They infer the visual content of real or imaginary scenes
from the brain activity patterns that they elicit via well-known
retinotopy of the visual cortex. Moreover, in [12], Miyawaki et
al. firstly ask subjects to watch flashing checkerboard images
as visual stimuli and record the evoked BOLD signal responses
of these stimuli in the early visual cortex (V1/V2/V3). Then,
they build a multi-scale local image decoder model for visual
stimuli reconstruction.

In recent years, the development of deep neural networks
(DNNs) technology revolutionizes many fields, e.g., image
classification [13], [14], speech recognition [15], [16] and
medical image segmentation [17], [18]. Further, several DNN-
based methods have been proposed for decoding the cog-
nitive states in human brains. For instance, some studies
use the outputs of DNN to reveal the neural activities in
the human visual cortex [19]–[22]. However, there are still
some challenges for stimuli image reconstruction from human
brain activity with fMRI data. In particular, 1) fMRI data
is usually high-dimensional with a lot of complex noises,
which interfere with the mining of real brain activity and
influence the reconstruction results; 2) the pairwise samples
are treated as time point samples, which ignores the temporal
information of the visual task; 3) the limited mapping between
the stimuli images and the evoked brain activity patterns,
which fails to assess the correlation between two cross-modal
data accurately.

To address these issues, in this paper, we propose a novel
visual stimuli reconstruction method called temporal informa-
tion guided GAN (TIGAN) to reconstruct stimuli images from
human brain activities. In order to effectively utilize temporal
information provided by fMRI data, we use the LSTM network
to process fMRI data to obtain the context correlation infor-
mation. Specifically, there are three key components in our
method. The first part is the stimuli image autoencoder, which
is used to map the stimuli images to a latent space through a
deep neural network. The second part is an LSTM network,
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used for fMRI feature mapping to extract temporal information
from fMRI. The third part is the discriminator for stimuli
image generation, which generates the images as similar as the
original inputs. Furthermore, we employ the pairwise ranking
loss [23] to encourage the similarity of ground truth image-
fMRI pairs to be greater than that of all other negative ones.

The major contributions of this paper are listed as follows:
• We propose a novel method to reconstruct the stimuli

images from the evoked fMRI data. A TIGAN method
is proposed to capture the temporal information in fMRI
data via the LSTM network and complete the task of
stimuli image reconstruction through GAN architecture.

• We introduce a pairwise ranking loss to measure the
relationship between the stimuli images and fMRI data.
This loss function ranks the stimuli images and fMRI that
ensure strongly associated (corresponding) is at the top
and weakly correlated at the bottom.

• We perform our method on two datasets for reconstruct-
ing natural images and handwritten digits. The experi-
mental results show that our method achieves the best
visual stimuli reconstruction from brain activity patterns
compared with the state-of-the-art methods.

II. RELATED WORKS

A. Cross-Modal Reconstruction

As the coming of the era of big data, different modalities
of data such as texts, images (i.e., natural images, medical
images, satellite images, etc), and videos are growing at an
unprecedented rate [24]–[26]. Such multi-modal data exhibit
heterogeneous properties, making it difficult for users to search
for information of interest effectively.

In recent years, a large number of studies have focused
on bridging the heterogeneity between different modalities
of data [23], [24], [27]. Some studies based on traditional
machine learning methods are proposed for the reconstruction
of cross-modal data [28], [29]. These methods aim to obtain
a better reconstruction effect by fitting different modalities of
data from the point of view of data distribution. However,
there are still some challenges to estimate the distribution of
one modality of data by the other due to the heterogeneity
of different data. For stimuli image reconstruction tasks, the
data distributions of fMRI scans and natural images are greatly
different, so it is difficult to obtain fine reconstruction results.

In the last decade, deep learning is attracting more and
more attention due to its powerful performance. At the same
time, some cross-modal data reconstruction methods based on
deep learning have been proposed, and better results have
been obtained [30]–[32]. For example, in [33], the authors
propose a cross-modal feature embedding framework, CNN
and Skip-Gram are used in the framework to extract the
features from different modalities of data. Further, the ex-
tracted feature representations are associated with a structured
objective in which the distance between the matched pair of
two different modalities of data is smaller than that between
the mismatched pair. Similarly, a framework that uses a Gated
Recurrent Unit (GRU) as a decoder is proposed in [34]. In
this work, two different modalities of data, i.e., images and

sentences, are mapped onto a common space to measure the
modal difference. However, these efforts ignore the structural
information in the visual scene, making the results less satis-
factory. As one of the most popular deep learning methods,
the generative adversarial networks (GANs) make it easier
and more powerful for models to learn to distinguish between
different feature representations. Some models based on GAN
architecture are proposed to do cross-modal reconstruction.
For example, a framework of cross-modal generative adver-
sarial networks (CM-GANs) is proposed in [35]. For bridging
the heterogeneity gap, CM-GANs learn a common feature
representation of two modalities of data. Furthermore, in [36],
the authors use the most difficult negative samples to replace
the sum violations in the negative samples. In this way, they
successfully overcome the limitations of [34].

B. Visual Image Reconstruction

1) Bayesian-based Linear Reconstruction: Inspired by
[12], several reconstruction models based on Bayesian frame-
work are proposed to explore the correlations among fMRI
voxels that can naturally reflect the characteristics of cor-
responding visual stimuli. For example, in [37], the authors
introduce a Bayesian framework by using the structural and
semantic features of encoding brain activity to accurately
reflect the spatial structure and semantic categories of the
objects contained in the observed natural image. However, it is
always time-consuming to acquire the fMRI data. Therefore,
it is difficult to reconstruct continuous data. To address this
issue, a Bayesian decoding framework is proposed in [38] to
reconstruct movies from the evoked BOLD signals. They pro-
pose a motion-energy encoding model that largely overcomes
the limitation of tardiness of BOLD signals measured via
fMRI. However, these methods neglect to mine the relationship
between the images and the evoked fMRI data. Fujiwara et
al. [39] develop a Bayesian Canonical Correlation Analysis
(BCCA) model to automatically learn image bases, each
module is modeled by a latent variable that associates with
a set of pixels in a visual image. CCA is used to construct
an invertible mapping based on the Bayesian model. Zhan et
al. [40] propose a reconstruction method based on support
vector machine (SVM) and Bayesian classifier followed by
independent component analysis (ICA) to improve the effi-
ciency of feature extraction and reconstruction performance.
Du et al. [41] use Bayesian inference to derive missing latent
variables, and effectively reconstruct handwritten digits with
10×10 binary images. Their joint generative model of external
stimuli and brain activities can not only extract non-linear
features in the visual image, but also capture the correlation
among voxel activities recorded by fMRI.

2) Non-linear Reconstruction: In the last decade, an exhila-
rating achievement has been made in the field of stimuli image
reconstruction based on deep learning methods. Several meth-
ods based on VAE are proposed to fit the distribution of stimuli
images in the mapping space so that the reconstructed image is
as analogous as possible to the original one [42]. For example,
in [20], the authors propose a deep generative multiview model
(DGMM) for reconstructing the perceive images from brain
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Fig. 1. The schematic diagram of the proposed temporal information guided GAN method. Training: Three subnetworks are included in the proposed model,
i.e., (a) an image autoencoder for mapping the stimuli images into latent space, which is in the dotted green area; (b) a LSTM generator for learning the
temporal information of the fMRI, which is in the dotted blue area; and (c) a discriminator for image reconstruction, which is in the dotted yellow area.
Testing: By using LSTM, the testing brain activities are encoded to ŷ?t+1. Via the trained ranking loss, we can obtain x̂?t+1 which is most related to ŷ?t+1.
Given x̂?t+1, we can reconstruct the visual image through the trained stimuli image decoder.

fMRI activities. The DGMM can be viewed as a nonlinear
extension of the linear BCCA. More recently, in [21], they
train the DNN model with fMRI data and the corresponding
stimuli images to build an end-to-end reconstruction model.
The results show that the end-to-end model can learn a direct
mapping between brain activities and visual stimulus.

Meanwhile, some GAN-based visual stimuli reconstruction
models have been proposed and greatly improve the precision
of the reconstruction results [19], [43], [44]. For instance, in
[43], they train generative adversarial networks to learn a gen-
erative model of images that is conditioned on measurements
of brain activity. Furthermore, in [44], the authors expand
on the idea of using adversarial training for reconstruction
but explore the capabilities of reconstructing arbitrary natural
images via GANs. They train a deep convolutional generative
adversarial network (DCGAN) separately on large image data
sets and let it learn the latent space in an unsupervised manner.
Recently, with the rapid development of GAN technology,
more and more GAN-based methods are proposed [45]–[47].
Among them, Du et al. [45] use a hierarchically structured
framework for neural decoding. And multi-task transfer learn-
ing of DNN representations and a matrix-variate Gaussian
prior are used in their framework.

The reconstruction models based on the Bayesian frame-
work aim to find the relationship between the visual stimuli
and the corresponding fMRI signals and establish a linear
mapping between them to achieve the task of image re-

construction. However, the linear mapping usually cannot
truly reflect the relationship between the two cross-modal
data, and the reconstruction results obtained are often coarse-
grained, resulting in difficulty to describe the details of the
images. Models based on deep networks can implement non-
linear transformations, greatly improve the accuracy of image
reconstruction, and describe images in fine granularity.

However, most of the existing deep learning methods based
on pairwise samples neglect the temporal information con-
tained in the fMRI data. Hence, in this paper, we will propose
a novel method that not only obtains high-accuracy image
reconstruction results through the GAN architecture but also
takes the temporal information into account by using the
LSTM network to describe more complementary temporal
information for the reconstruction task. We also introduce a
pairwise ranking loss to measure the relationship between the
stimuli images and fMRI data, which ensures the correspon-
dence between the two cross-modal data.

III. PROPOSED METHOD

A. Notations

Let N be the number of images which we used in the visual
tasks, and let D denotes the dimensions of stimuli images. We
let X = {xpq} ∈ RN×D, p = 1 : N, q = 1 : D denotes the
stimuli images. At the same time, the preprocessed fMRI scans
for S subjects is denoted by Y = {ymn} ∈ RTf×V ,m = 1 :
Tf , n = 1 : V , where Tf is the number of time points in units
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of Repetition Time (TR), V is the number of voxels, and ymn
denotes the functional activity for the subject in the m-th time
point and the n-th voxel. As proposed method is a cross-modal
data reconstruction task, the samples are pairwise, which is
saying that the number of the samples is T , and T = N = Tf .
Here, for convenience, we let (xt, yt) be a pairwise sample at
time point t, t = 1, 2, . . . , T .

B. Temporal Information Guided GAN

We develop a TIGAN method for modeling the relationship
between the stimuli images and the evoked brain activities.
The proposed method generates two different modalities of
data onto a common latent space by two specific generative
networks and reconstructs the stimuli images via a discrimina-
tive network. The schematic diagram of proposed TIGAN is
shown in Fig.1. There are three subnetworks in the proposed
model, i.e., 1) an image autoencoder for mapping the stimuli
images into latent space, 2) a LSTM generator for learning the
temporal information in the fMRI data, and 3) a discriminator
for image reconstruction.

1) Stimuli Image Autoencoder: Due to only a small number
of samples can be used to train the proposed network for
stimuli image reconstruction, we refer the pretrain strategy
in [44] to pretrain an autoencoder to improve the model
performance. Then, the pretrained encoder network is em-
ployed to map the stimuli images onto a latent representation
space. Herein, the image encoder network maps the features
of visual stimuli images onto the latent space zi, where
the latent feature x̂t = Eθ(xt). Here E(·) is an encoder
function, θ is the parameters in the encoder. While the decoder
network reconstructs the image xrecont = Gφ(x̂t) by using
the nonlinear function G(·), where φ is the parameters of the
decoder network. The loss function of the autoencoder can be
defined as

min
θ,φ

1

T

T∑
t=1

‖xt −Gφ(Eθ(xt))‖2F . (1)

2) LSTM Network for fMRI Feature Mapping: LSTM net-
work consists of repeated cells that receive input from the
previous cell as well as the data input yt for the current
timestep t. Each LSTM cell contains a cell state ct and a
hidden state ht , which are modulated by four neural network
layers that control the flow of information into and out of cell
memory. The equations governing the LSTM are defined as

it = σ(Wiyt + Uiht−1 + bi),

ft = σ(Wfyt + Ufht−1 + bf ),

c̃t = tanh(Wcyt + Ucht−1 + bc),

ct = it ∗ c̃t + ft ∗ ct−1,
ot = σ(Woyt + Uoht−1 + bo),

ht = ot ∗ tanh(ct).

(2)

The fMRI generator produces an output image ŷt given
the corresponding brain activities in sequential order yt, t =
1, 2, . . . , T . Here, the generated image ŷt is as analogous
as possible to the reconstructed image in the next step
ˆyt+1. Therefore, the generator should be a sequential LSTM

model, which produces the sequentially next image, ŷt =
L(y1, y2, · · · , yt), t = 1, 2, . . . , T . The LSTM network maps
the fMRI signals into the fMRI latent space zf , where the
latent feature ŷt = L(yt), t = 1, 2, . . . , T . Here, L(·) defines
the LSTM network mapping.

3) Discriminator for Stimuli Image Generation: As a re-
construction method, the goal of TIGAN is to make the
reconstructed image as similar to the original as possible.
So the discriminator in the model takes a reconstructed or
original image as input, then a binary decision is made to
decide whether the input is real or fake, which will result
in the output 1 or 0, respectively. Herein, we let the original
image xt as the real sample and the generated image xrecont as
the fake one at the same time. The proposed TIGAN method
is essentially a sequence generation model which receives the
context images as the preceding time-steps and the real image
in the generator as the last time-step. The final hidden state is
mapped onto a sigmoid predicting whether it is a real or fake
image.

We involve two loss components to compute the loss
between the generated image xrecont and the original image
xt on the basis of features from the trained deep neural
networks. The first component is feature reconstruction loss
Lf , which determines whether features are activated above a
threshold at all. The feature reconstruction loss is obtained via
mean absolute error (MAE), which is calculated between the
generated image xrecont and the original image xt. The feature
reconstruction loss Lf can be determined as

min

T∑
t=1

D∑
q=1

|(xt)(q) − (xrecont )(q)|, (3)

where D denotes the dimensions of stimuli images and q
means the q-th pixel of the image (q = 1, 2, . . . , D).

The second component of the losses is the discriminator
loss Ld. The discriminator discriminates the real sample.
Here, to make the discriminative result close to 1, we let the
generated image xrecont close to the real image xt to fool the
discriminator. The discriminator loss Ld can be defined as

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x))]+

Ez∼pz(z)[log(D(1−D(G(z))))].
(4)

The hybrid loss function LD combine the two loss compo-
nents as

LD =
1

T
(Lf + Ld). (5)

C. Ranking Loss for Cross-Modal Data Fusion

One of the most significant challenges in the field of stimuli
image reconstruction is how to model the relationship between
the stimuli images and the evoked fMRI scans. Inspired by
[23], we develop the pairwise ranking loss from the image-
textual reveral to visual stimuli reconstruction field for measur-
ing the relationship between two different modalities of data,
i.e., images and brain activities. The schematic diagram of
pairwise ranking loss in visual stimuli reconstruction is shown
in Fig.2. Here, we denote (x̂t, ŷt) as the pairwise features
at time point t, which generated from stimuli image encoder
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Fig. 2. The schematic diagram of pairwise ranking loss in visual stimuli
reconstruction. Circles represent the fMRI data and the triangle represent the
stimuli images. Different colors means different categories in the dataset. Here,
blue=“cats”, green=“bottles”, yellow=“shoes”.

and LSTM network, respectively. We further denote the non-
corresponding samples by using x̂′t and ŷ′t, where x̂′t goes
over stimuli images independent of ŷt, and ŷ′t goes over brain
activities not evoked by x̂t. The objective function ensures
that the groundtruth image-fMRI pairs at the top and weakly
related ones at the bottom. More specifically, for the samples
which are assortative, they will have the maximum value of
weight. For the pair which is the same category but not the
correct one, the weight will be medium, for the pair in which
the image belongs to the misclassification category, we assume
that this pair is an unrelated sample, and give this sample the
lowest weight. Therefore, we optimize the ranking loss

LR =
1

T

T∑
t=1

LRank(x̂t, ŷt), (6)

where ranking loss LRank of the single pairwise sample
(x̂t, ŷt) is defined as

LRank =
∑
x̂′
t

[α− s(x̂t, ŷt) + s(x̂′t, ŷt)]++∑
ŷ′t

[α− s(x̂t, ŷt) + s(x̂t, ŷ
′
t)]+,

(7)

where α is a margin, s(x̂t, ŷt) = − ‖ (max(0, x̂t − ŷt)) ‖2
is the order-violation penalty used to measure the similarity
between the stimuli images and the evoked brain activities.
Futher, [x]+ represents max(x, 0).

The complete loss function is then given as

Lloss = λDLD + λRLR, (8)

where λD, λR are hyper-parameters to balance the effects of
the two loss functions. We randomly choose all the parameters
from {0.05, 0.1, 0.5, 1, 5, 10}.

D. Implementation Details

1) Stimuli Image Encoder: In this work, we refer to [44],
which based the model on a publicly available framework
and implementation1. The encoder network consists of one
linear and four convolutional layers, each followed by batch
normalization and ReLU activation functions. The linear layer
takes z and maps it to the first deconvolutional layer that
expects 512 feature channels. The generator then maps to 256,
128, 64 and 1 feature channels across the convolutional layers.
For the first two convolutional layers, kernel sizes are 2×2 and
stride is 1. For the last two convolutional layers, kernel sizes
are 4×4 and stride is 2.

2) LSTM Network for fMRI Feature Mapping: First, the
LSTM network mapped the fMRI activity patterns to the
first fully connected layer. Then, the first fully connected
output as input to a single-layer LSTM module. Finally, the
second fully connected layer mapped the output of the LSTM
module to latent features. The two fully connected layers in the
LSTM network use the ReLU activation function. The Adam
optimization algorithm [48] was used to optimize the LSTM
network. When there is only a one-time point in our multi-
time point data fusion, we set the time steps of LSTM to 9,
which equals the number of time-points in one run experiment
of a label.

3) Discriminator for Stimuli Image Generation: The de-
coder network consists of 4 deconvolutional layers, followed
by batch normalization and ReLU activations. Except in the
initial layer (which had 3×3 kernels) all layers use kernel sizes
of 4×4 and a stride of 2. The layers map from 1 to 32, then 64,
128 up to 256 feature channels, and are followed by a linear
layer mapping all final activations to a single value reflecting
the discriminator decision.

In the training stage, we input the visual stimuli images
xt, t = 1, 2, . . . , T to the image encoder and the fMRI data
yt to the LSTM generator. Then the image generator maps
the images into the image latent space zi and the output of
the LSTM generator is the fMRI latent space zf . We combine
the two cross-modal latent space into a common space via
the ranking loss LR, to strengthen the relationship between
two cross-modal data. The trained image latent features x̂t is
sent to the image decoder as the input and the output is the
generated image xrecon.

In the test stage, we only use the fMRI data in the test
set as the input. By using LSTM, the testing brain activities
y?t+1 are encoded to ŷ?t+1. Via the trained ranking loss, the
image features x̂?t+1 which is most related to ŷ?t+1 could
be determined based on the fMRI features. Then the image
features are utilized as the input to the trained image decoder.
Given x̂?t+1, we can reconstruct the visual image through the
trained stimuli image decoder. Herein, we use Adam [48] as
the optimizer with the learning rate of 0.0005. The batch size
of the DS105 is set as 64, and 16 for handwritten digits dataset.

1http://github.com/musyoku/improved-gan
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TABLE I
PROPERTIES OF THE DATASETS USED IN THE EXPERIMENTS

Datasets Instances Categories Pixels Voxels Training

DS105 8712 7 100×100 2294 3465
Handwritten Digits 100 2 28×28 3092 90

IV. EXPERIMENTAL RESULTS

A. Datasets

In this paper, we employ two publicly available datasets to
validate the proposed method, including, a) Open NEURO2

dataset, and b) Handwritten digits dataset. More details can
be found as follows.

a) Open NEURO dataset: We utilize a publicly avail-
able datasets shared by Open NEURO for running empirical
studies. In this paper, we select the dataset numbered DS105
[1]. This task is a one-time retest task. DS105 consists of
eight categories stimuli images, which are face, house, cat,
bottle, scissors, shoes, chair, and the meaningless pattern. The
images are all grayscale with the resolutions of 400×400.
In order to reduce the feature dimension and improve the
computational efficiency of the model, we down-sampling
the stimuli image into 100×100 by means of descending
sampling. And also, the edge gradation that does not have
practical meaning in the grayscale image is converted to 0.
The dataset was preprocessed by the software easy fMRI3,
i.e., slice timing, smoothing, normalization, and anatomical
alignment.

In DS105 [1], 6 subjects were stimulated with grayscale
images in 8 categories, and each subject underwent 12 runs of
experiments. Among them, Subject #5 miss one run of data
record, with only 11 runs of data. After the preprocess, each
subject has 1452 time points with 2294 voxel-level features at
each time point. Herein, we exclude the meaningless label in
the dataset to verify the reconstruction effect of the real stimuli
images, and the samples of seven categories are reserved. Two
brain regions of ventral temporal cortex were specialized for
representing specific categories, which are fusiform face area
(FFA) and the parahippocampal place area (PPA), respectively.

According to the training and testing strategies of machine
learning, the data of the test samples cannot appear in any
form in the training process. Therefore, we believe that if we
use the same subject neural responses for training and testing
phase, new time points that are unseen during training are
still a potential risk of data leakage in the testing phase. In
this paper, we use a leave-one-out cross validation strategy
to adjust the parameters and evaluate the effectiveness of the
method we propose. In each phase, data from five subjects are
used for training, while data from one subject is used during
the test stage. In the training stage, we use data that 5(subjects)
× 11(runs) × 9(images) × 7(categories) = 3465 samples. And
in the test phase, we use one subject data in one run. We

2http://openneuro.org
3https://easyfmri.learningbymachine.com/

then repeat the experiment six times and calculate the average
results as the final results.

b) Handwritten Digits dataset [49]: This dataset con-
tains 100 gray-scale images of handwritten digits (50 of
digital “6” and the equal numbers of digital “9”). The image
resolution is 28×28. The evoked fMRI data contain voxels
from the V1, V2, and V3 areas. Similar to [20], 10-fold
cross validation is performed (i.e., each category contained
45 training data and 5 testing data per experiment). In each
fold, the training set consists of 90 time points of image-fMRI
samples and the test set consists of 10 time points of image-
fMRI samples. Table I shows the attributes and information
for the datasets used in this paper.

B. Compared Methods

The proposed method is compared with four well-known
methods, including

a) Bayesian canonical correlation analysis (BCCA) [39]:
BCCA is a multi-view generative model used for brain activity
pattern analysis. However, as a kind of linear generative model,
its linear architecture and spherical covariance assumption may
influence the generation results.

b) Deep canonically correlated autoencoder (DCCAE)
[50]: DCCAE, a DNN-based model combining CCA and
autoencoder-based terms, consists of two basic autoencoders
used for learning the deep representations from multi-view
data. However, DCCAE ignores the interview reconstruction
errors of multi-modal data.

c) Deep generative multiview model (DGMM) [20]:
DGMM is a deep generative multi-view learning model for
reconstructing the stimuli images from brain activities. It can
be viewed as a nonlinear extension of the BCCA. However,
DGMM does not take the temporal information of fMRI data
into account.

d) Deep convolutional generative adversarial network
(DCGAN) [44]: DCGAN uses generative adversarial networks
for arbitrary image generation from stimuli images (handwrit-
ten characters or natural grayscale images). However, just like
other methods, the temporal information of fMRI data is not
taken into consideration in DCGAN.

C. Evaluation Metrics

In our experiment, three evaluation metrics are used to
measure the reconstruction performances of different methods,
which are Euclidean distance (Euc dis), Pearson’s correlation
coefficient (PCC) and mean squared error (MSE), respectively.
Here, Euc dis measures the distance between the original
and reconstructed image. The smaller this value is, the closer
the reconstructed image is to the original image in feature
space. And the PCC value shows the correlation between
the original and reconstructed images. The last but not the
least, the reconstruction accuracy is measured by MSE, which
calculates the pixel-level error between the original image
and the reconstructed image. The smaller the error, the more
similar the reconstructed image is to the real image.
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TABLE II
QUANTITATIVE PERFORMANCES OF COMPARED METHODS ON THE DS105 DATASET. (↑: THE HIGHER THE VALUE IS, THE BETTER PERFORMANCE THE

METHOD GET. ↓: THE LOWER THE VALUE IS, THE BETTER PERFORMANCE THE METHOD GET.)

Model Euc dis↓ p-value PCC↑ p-value MSE↓ p-value

BCCA 0.787±0.093 1.3839e-14 0.561±0.079 9.8467e-11 0.208±0.062 8.2238e-9
DCCAE 0.751±0.096 1.6552e-10 0.584±0.103 8.5767e-10 0.171±0.104 2.0229e-7
DGMM 0.652±0.082 2.4369e-7 0.636±0.096 2.8228e-7 0.124±0.069 3.4167e-4
DCGAN 0.641±0.089 7.9318e-5 0.651±0.096 8.0966e-6 0.116±0.074 0.0055
TIGAN(Proposed) 0.609±0.061 —— 0.689±0.063 —— 0.091±0.051 ——

TABLE III
QUANTITATIVE PERFORMANCES OF COMPARED METHODS ON THE HANDWRITTEN DIGITS DATASET.

Model Euc dis↓ p-value PCC↑ p-value MSE↓ p-value

BCCA 0.679±0.155 1.1709e-10 0.423±0.139 1.6853e-22 0.119±0.023 1.8554e-20
DCCAE 0.631±0.064 9.5486e-9 0.529±0.047 5.0496e-20 0.077±0.018 3.3630e-11
DGMM 0.585±0.061 0.0025 0.801±0.061 0.0291 0.037±0.019 0.004
DCGAN 0.581±0.055 0.0238 0.799±0.057 0.0163 0.038±0.022 0.0096
TIGAN(Proposed) 0.568±0.037 —— 0.812±0.059 —— 0.033±0.015 ——

D. Experimental Results

1) Quantitative Analysis: Performances of compared meth-
ods on two datasets are reported in Table II and III. Table II
shows the experimental results of dataset DS105, several ob-
servations can be drawn as follows. First, the proposed TIGAN
obtains a considerably better performance compared with the
other methods. Second, by comparing deep learning methods
(i.e., DCCAE, DGMM, DCGAN and the proposed TIGAN
method) with BCCA, a linear model for stimuli reconstruction,
we can see that our method is always out-perform BCCA.
These results show that our reconstruction method with deep
network is better than linear model by extracting nonlinear
features from visual images and fitting images. Third, com-
pared with DCCAE, the proposed method shows significantly
better performance. The possible reason for the improvements
is that the temporal information can be provided by LSTM
in the proposed method. Fourth, the performance of TIGAN
is more moderate than DGMM on both of the two datasets.
This may be caused by the performance gap between the deep
network in DGMM and the generative discriminant model in
TIGAN. Finally, compared with DCGAN, the ranking loss in
our method plays an important role in mining the correlation
between the stimuli images and the brain activity patterns.

For the handwritten digit dataset, the results are shown in
Table III. The quantitative results on the three evaluation met-
rics are also at the best level. For the three compared methods
of BCCA, DCCAE, and DGMM, we refer to the experimental
settings in [20] and also refer to their experimental results on
MSE. And for Euc dis and PCC here, we obtained similar
results to that on the DS105 dataset. The reason is as analyzed
above. Compared with DCGAN, our method also takes better
results because of the use of the LSTM network and the cross-
modal ranking loss. In addition, p-values are also displayed in
the tables to verify the significance of our experimental results.

2) Qualitative Analysis: The reconstructed results on two
different datasets are shown in Fig.3-5, respectively. In each

figure, the top row shows the presented visual images, while
the following rows show the reconstructed results of all
compared methods.

The reconstructing results of DS105 (category = ”bottles”)
are shown in Fig.3. As illustrated, our method produces better
reconstruction results than the compared methods. Fig.3 also
indicates that the effect of our method is obviously better
than other methods on the reconstruction of natural images.
In particular, BCCA and DCCAE cannot provide acceptable
performance in characterizing detailed contours, which may
be related to their mapping capabilities. DGMM and DCGAN
are better than the first two methods, but they are not as good
as our method when describing image details, such as color.

The reconstructing results on handwritten digits dataset
are shown in Fig.4. As is shown in Fig.4, the reconstructed
digits are very similar to the original images. Compared
with our method, the performances of BCCA and DCCAE
are not acceptable. The complex noises often influence their
reconstruction results and the results also lack of the basic
features in the original images. Furthermore, the reconstruction
results of DGMM and DCGAN are coarse too. Although
their results are better than those of BCCA and DCCAE,
some detailed information are lost in DGMM and DCGAN
compared with our TIGAN method, because they did not take
the temporal information into account.

Fig. shows the reconstruction results of proposed TIGAN
method on seven different categories in DS105 dataset. As is
shown in the figure, bottles and shoes get the best results as the
images in both categories are simple and clear. Then, scissors
and houses get the sub-optimal performance. The reason may
be that although the images in these two categories have clear
edges, there is a lot of detailed information inside, which is
more difficult to capture than the first two categories. The
other three categories of images do not perform as well as the
previous results due to their complexity.

By comprehensively comparing the experimental results
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Fig. 3. Qualitative performances of compared methods on DS105 (category=bottles) dataset.

Original

BCCA

DCCAE

DGMM

TIGAN

DCGAN

Fig. 4. Qualitative performances of compared methods on the handwritten digits dataset.

on the two datasets DS105 and handwritten digits, we can
see that whether through quantitative analysis or qualitative
analysis, the handwritten digits dataset has achieved better
results than DS105. The reason may be mainly due to the
complexity of the images. The images in DS105 are grayscale
natural images, while the handwritten digits dataset is some
handwritten digits, which is relatively simple. In addition, the
images of the handwritten digits dataset have black bottoms
and white numbers, which have clear edges and easy to be
discriminated. However, grayscale images are more difficult
to distinguish on the edges, and the pixel values of the target
and background parts are closer.

V. DISCUSSION

In this section, firstly, we perform ablation study to eval-
uate the effectiveness of each component (i.e., LSTM net-
work, ranking loss and discriminator loss respectively) in our
method. Secondly, the influence of different error representa-
tions (MAE and MSE) is evaluated. Thirdly, we present the
results of visual stimuli reconstruction on data from different
subjects. Then, we evaluate the effects of regularization pa-
rameters in our model. In addition, the influence of different
number of LSTM layers and the correlation of cross-modal
pairwise samples are also taken into consideration. Finally,
we present the limitations of this work as well as the possible
future research direction.
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TABLE IV
PERFORMANCES OF DIFFERENT CATEGORIES ON THE DS105 DATASET.

Category Evaluation BCCA DCCAE DGMM DCGAN TIGAN

bottles
Euc dis ↓ 0.742±0.085 0.724±0.098 0.635±0.083 0.617±0.085 0.581±0.069

PCC ↑ 0.591±0.081 0.615±0.097 0.668±0.102 0.675±0.101 0.719±0.062
MSE ↓ 0.179±0.065 0.144±0.102 0.104±0.074 0.079±0.071 0.081±0.049

shoes
Euc dis ↓ 0.762±0.102 0.733±0.106 0.627±0.081 0.623±0.094 0.591±0.062

PCC ↑ 0.601±0.083 0.605±0.107 0.653±0.092 0.683±0.091 0.704±0.065
MSE ↓ 0.186±0.068 0.151±0.104 0.109±0.069 0.112±0.075 0.079±0.053

scissors
Euc dis ↓ 0.778±0.083 0.743±0.091 0.645±0.078 0.635±0.093 0.605±0.055

PCC ↑ 0.575±0.077 0.581±0.111 0.639±0.097 0.701±0.097 0.698±0.072
MSE ↓ 0.206±0.063 0.173±0.105 0.126±0.075 0.121±0.073 0.089±0.055

houses
Euc dis ↓ 0.801±0.099 0.757±0.094 0.647±0.083 0.645±0.088 0.611±0.069

PCC ↑ 0.559±0.071 0.578±0.106 0.631±0.104 0.632±0.094 0.688±0.062
MSE ↓ 0.202±0.062 0.179±0.101 0.129±0.066 0.126±0.077 0.091±0.047

faces
Euc dis ↓ 0.795±0.089 0.753±0.099 0.652±0.086 0.637±0.087 0.618±0.051

PCC ↑ 0.547±0.089 0.587±0.103 0.635±0.092 0.630±0.097 0.681±0.055
MSE ↓ 0.211±0.061 0.172±0.113 0.125±0.065 0.138±0.079 0.088±0.052

chairs
Euc dis ↓ 0.806±0.103 0.767±0.095 0.684±0.082 0.664±0.088 0.621±0.062

PCC ↑ 0.521±0.078 0.565±0.095 0.617±0.094 0.621±0.099 0.672±0.066
MSE ↓ 0.232±0.056 0.193±0.106 0.134±0.064 0.098±0.069 0.102±0.048

cats
Euc dis ↓ 0.824±0.091 0.779±0.089 0.675±0.080 0.667±0.089 0.635±0.059

PCC ↑ 0.535±0.074 0.559±0.101 0.611±0.093 0.617±0.095 0.662±0.061
MSE ↓ 0.239±0.061 0.188±0.098 0.142±0.071 0.136±0.075 0.109±0.052

shoes

scissors

houses

faces

chairs

cats

bottles

Fig. 5. Qualitative performances of TIGAN on all the seven categories in
DS105 dataset.

A. Ablation Study

As mentioned above, there are three key components in
the proposed TIGAN method, i.e., 1) LSTM network used

for mining the temporal information in fMRI data; 2) the
ranking loss used for measuring the relationship between the
stimuli images and fMRI data; and 3) the discriminator loss
used for making the reconstructed images more similar to the
original ones. In order to evaluate the contribution of different
components to model performance, we conduct ablation study
with detailed results to evaluate the effectiveness of each
component in our method. Fig.6 shows the reconstruction
performance (MSE) via different number of pixel features of
images in DS105.

1) With only one component: Here, we use only one
component to reconstruct the stimuli images and measure each
component’s contribution to the model. As can be seen in
Fig.6(a), only LSTM means that we don’t use ranking loss
to emphasize the relationship between fMRI and images and
there is also no discriminator loss to make the reconstructed
image more similar to the original one. Only ranking loss
refers that there are no LSTM and GAN architecture in the
method. Only discriminator loss means that only DCGAN is
used for the image reconstruction.

2) With 2/3 of components: Here, two of the three com-
ponents are included to evaluate the impact on the model
when a component is absent. Fig.6(b) shows the reconstruction
performance. The LSTM block in our TIGAN method can
balance the contributions of temporal information for the
stimuli image reconstruction task. To study the influence of
the LSTM block used in TIGAN method, we use a multi-layer
perceptron (MLP) to replace the LSTM block in our method.
Hence, the new method without the LSTM block. Meanwhile,
in our proposed hybrid loss function, the discriminator loss
is used to make the reconstructed image more similar to the
original image, and the ranking loss is used to measure the
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Fig. 6. Ablation study results on the DS105 (category = bottles) dataset. (a) Different performance that compared TIGAN with only one component. (b)
Different performance that compared TIGAN with two components in the method.
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Fig. 7. Reconstruction results with/without LSTM or the discriminator on the
DS105 (category = bottles) dataset.

relationship between two modalities of data (i.e., fMRI and
images). To study the influence of each term in the hybrid
loss, we train our proposed methods without the discriminator
loss and ranking loss, respectively.

We can mainly observe two potential trends and conclusions
through the figure. First, compared the three main component
in our method (i.e., LSTM network, ranking loss and discrim-
inator loss), the LSTM gets better MSE performance. Second,
the proposed method which combine all the three components
gets the best result. This indicates that every component of the
method contributes to improving the reconstruction results.

Besides the quantitative analysis above, we also give the
visualization results with or without each component in our
model. And the visualization results are shown in Fig.7. The
first row is the original input images. The second row is
the reconstructed results of TIGAN. The third row is the
reconstructed results without LSTM and the last row is the
results without discriminator (λD = 0). As shown in Fig.7, we
can easily find that in the case of network missing, although
the reconstruction results can still be obtained, the accuracy is
not as good as that of the complete model. In the visualization
results, in the absence of LSTM, the reconstruction of the ob-
ject’s edge shape is unstable, which may be due to the lack of
the structural semantics contained in the temporal information.
In the absence of the discriminator, the reconstruction results
are not precise enough, which may be due to the lack of the
game process of the discriminator in the image reconstruction.

In addition, since both the proposed TIGAN and the com-
pared method DCGAN [44] use GAN architecture as the
generative model, one of the main differences between the two
methods is the utilization of ranking loss. Thus, we conduct
experiment performed on DS105 dataset (category=bottles)
to add the ranking loss to DCGAN for comparing the per-
formance of the two methods. The experimental results are
reported in Table V.

TABLE V
THE EXPERIMENTAL RESULTS OF DIFFERENT COMPARE METHODS WITH
OR WITHOUT THE RANKING LOSS. (METHOD-LR MEANS THAT LR LOSS

IS USED IN THE MODEL.)

Methods Euc dis↓ PCC↑ MSE↓

DCGAN 0.617±0.082 0.675±0.101 0.079±0.071
DCGAN-LR 0.608±0.063 0.686±0.082 0.074±0.077

TIGAN 0.588±0.099 0.709±0.057 0.088±0.091
TIGAN-LR 0.581±0.069 0.719±0.062 0.081±0.049

As we can see from the table, the ranking loss leads to
the improvement of the methods’ performance. Note that after
adding the ranking loss to the compare methods, our proposed
TIGAN method still achieved good results. Compared with
DCGAN, after adding the ranking loss, the most obvious
difference between DCGAN and TIGAN is the LSTM module
which is used for mining the temporal information. And the
leverage of the fMRI temporal information led the proposed
TIGAN method to obtain better performance.

B. Influence of MAE and MSE as Different Error Represen-
tations

In our proposed method, mean absolute error (MAE) was
used for calculating the pixel reconstruction error. And MSE
was used as an evaluation metric to measure the model
performance. For comparing the influence of these two dif-
ferent error representations, in this section, we conduct an
experiment, and the samples with categories of bottles and
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Fig. 8. Cross-subject reconstruction results for all six subjects in DS105 (category=bottles).

shoes in the dataset DS105 are used. In the experiment, MAE
loss was replaced by MSE loss to measure the difference in
pixel level. The reconstruction results are shown in Table VI.
As can be seen in the table, with the MAE loss, Euc dis and
PCC get better performance. With the MSE loss, the same
evaluation metric MSE gets better performance. The reason
may be that the MSE results are trained to decline.

TABLE VI
THE EXPERIMENT RESULTS OF USING MAE OR MSE AS THE FEATURE

RECONSTRUCTION LOSS.

Categories Methods Euc dis↓ PCC↑ MSE↓

bottles TIGAN-MSE 0.593±0.082 0.696±0.104 0.076±0.056
TIGAN-MAE 0.581±0.069 0.719±0.062 0.081±0.049

shoes TIGAN-MSE 0.606±0.077 0.693±0.042 0.077±0.088
TIGAN-MAE 0.591±0.062 0.704±0.065 0.079±0.053

The mean square error (MSE) is the most commonly used
regression loss function, which is calculated by the square
sum of the distance between the predicted value and the
ground truth value. Mean absolute error (MAE) is another
loss function used in regression models. MAE is the sum of
the absolute values of the difference between the target and
predicted values. It measures only the mean modulus length
of the predicted value error, not the direction. MSE is easy to
calculate, but MAE is more robust to outliers.

C. Individual Differences Between Subjects

One of the main challenges of task-based fMRI research
is the use of multi-subject datasets. On one hand, multi-
subject analysis is critical to understanding the universality and
validity of results generated across subjects. On the other hand,
analyzing multi-subject fMRI data requires accurate functional

and anatomical alignment between the brain activities of
different subjects to improve the performance of the final
results [51]–[53].

By using the proposed method, the reconstructed natural
images for all six subjects in DS105 (category=bottles) are
shown in Fig.8, where the top row is the presented visual
stimuli, and the following rows are the reconstructed images
obtained from six individual subjects in the dataset. As is
shown in Fig.8, although the details of the reconstructed
images varied slightly, all the subjects achieve acceptable
reconstruction results. Further, we calculate the correlation
of the reconstruction results of different subjects, all the
correlations between subjects are greater than 0.7.

TABLE VII
THE EXPERIMENT RESULTS ON DS105 (CATEGORY=BOTTLES) VIA

INDIVIDUAL-SUBJECT AND MULTI-SUBJECT

Euc dis↓ PCC↑ MSE↓

Individual S1(S1) 0.583±0.075 0.728±0.091 0.069±0.071
Individual S1(S2) 0.625±0.086 0.694±0.102 0.083±0.076

Multi-Subject(S1) 0.593±0.047 0.711±0.055 0.078±0.049
Multi-Subject(S2) 0.586±0.063 0.707±0.085 0.073±0.052

In order to clarify the individual differences between sub-
jects, we also conduct an experiment performed on the DS105
dataset (category=bottles). To compare the difference between
the individual subject and multi-subject, we use Subject #1
as an example. As the data from Subject #1 have 12 runs of
visual task experiment, we use the leave-one-run-out strategy
for cross-validation. The results are listed in Table VII. In the
table, (S#) (#=1,2) means that the #-th subject is the test sub-
ject. Compared with multi-subject data, when the experiment
is performed on individual Subject #1, better performance has
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Fig. 9. Reconstruction results (MSE) of the Handwritten Digits dataset vis
different values of λR and λD .

been obtained because of the isotropic distribution of data.
However, when the new Subject #2 is added, the utilization
of multi-subject data can maintain more stable results than
individual data.

D. Effects of Regularization Parameters

In our proposed method, the optimized objective function is
mainly composed of two parts, pairwise ranking loss LR and
discriminator loss LD. In order to balance the two loss parts
and control their influence in the model, we set two hyperpa-
rameters λR and λD. We conduct image reconstruction experi-
ments on the Handwritten Digit Dataset with different regular-
ization parameters chosen from {0.05, 0.1, 0.5, 1, 5, 10}, and
the results are displayed in Fig. 9.

As can be seen from Fig. 9, we can observe that with differ-
ent parameters, our TIGAN method can obtain relatively stable
reconstruction results. And the best regularization parameter
can be chosen from λD = 1 and λR = {1, 5, 10}, where the
proposed TIGAN achieves better results.

E. Influence of Different Number of LSTM Layers

In this section, we conduct image reconstruction experi-
ments on the category of bottles in DS105 to discuss the
decoding effect of different number of LSTM layers.

Under the premise of keeping the other structures of the
model unchanged, we set the number of layers of the LSTM
module in our proposed TIGAN as 1, 2 and 3. The models
with different numbers of LSTM layers were tested in stimuli
image reconstruction experiments. Same as the experiments
above, three evaluation metrics are used to measure the
reconstruction performances of different methods, which are
Euclidean distance (Euc dis), Pearson’s correlation coefficient
(PCC) and mean squared error (MSE), respectively. And the
results are listed in Table VIII.

It can be seen from Table VIII that with the increase in the
number of layers of LSTM, the performance of PCC showed

a trend of decline and the Euc dis and MSE showed a trend
of rising. When the number of layers of LSTM was increased
to three, the performance of the model decreased significantly,
and over-fitting was likely to occur.

TABLE VIII
THE EXPERIMENT RESULTS OF USING DIFFERENT NUMBERS OF LSTM

LAYERS. (# MEANS THE NUMBER OF LSTM LAYERS)

# Euc dis↓ PCC↑ MSE↓

1 0.581±0.069 0.719±0.062 0.081±0.049
2 0.589±0.053 0.712±0.081 0.087±0.061
3 0.606±0.077 0.701±0.042 0.098±0.059

F. Correlation of Cross-modal Pairwise Samples

One of the most significant challenges in the field of stimuli
image reconstruction is how to model the relationship between
two modalities of data, stimuli images and the evoked brain
activities, respectively. In this section, we will discuss the
effectiveness of the ranking loss used in our model. Three
sets of experiments are included and the description are as
follows:

Circumstance A: training the model by “bottles”, testing
by “cats”.

Circumstance B: training the model by “bottles”, testing
by “bottles” images but the activities corresponding to seeing
“cats”.

Circumstance C: training the model by “bottles” and
“cats”, testing by “bottles” images but the activities corre-
sponding to seeing “cats”.

The reconstruction results under the three circumstances are
shown in Fig. 10. As can be seen in the figure, when we train
the model by “bottles” and test by “cats”, “cats” seem to be a
new label under this circumstance. But we can also obtain the
reconstruction results of “cats”. Under circumstance B, the
reconstruction gets the worst performance. The reason may
be that all the image samples are “bottles”, the new-added
“cats” brain activity cannot learn the related image features.
At the last, when we add the “cats” samples to the training set,
TIGAN can reconstruct the true images even uses the random
data-label pairs.

In addition, we also did quantitative analysis by computing
the ranking loss to show the relevance of pairwise sample
(x̂t, ŷt). The results are listed in Table IX. As is shown in the

Results of 

Circumstances A

Results of 

Circumstances B

Results of 

Circumstances C

Fig. 10. Experimental results by randomizing the data-label pair.
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table, the positive (ground truth) pairs obtained the minimizing
ranking loss, which means that they are the most relevant
pairs. For circumstance A, even the training set and the test
set have different labels, but the value of the ranking loss is
also small because the test set samples are data-label pairs
of “cats”. For circumstances B and C, the value of ranking
loss gets high because of the randomizing pair-label pairs,
and circumstances B is higher because of the disappearance
of “cats” in the training phase.

TABLE IX
THE RESULTS OF RANKING LOSS UNDER DIFFERENT CIRCUMSTANCES.

Ranking Loss

Positive Pair 0.00789
Circumstances A 0.00969
Circumstances B 0.36221
Circumstances C 0.25604

G. Limitations and Future Work

We believe that there are still several limitations in the
current work. First, the sample size of the task-based fMRI
datasets used in this paper is still small due to the diffi-
culty of data collection. To solve the problem, some studies
are proposed based on domain adaptation [54] and transfer
learning [55] algorithms. In order to make the algorithms
available to large-scale and multi-site fMRI datasets, this is
an important issue. Second, the proposed method consists of
three subnetworks, which will increase the memory burden for
visual reconstruction. Hence, model compression is an impor-
tant research direction for practical applications. Third, as an
end-to-end machine learning method, deep neural networks
often have difficulty observing internal mechanisms. In the
future, we plan to add the human visual imaging mechanism
as prior knowledge to the visual image reconstruction task,
to realistically simulate the human brain activities when pro-
cessing visual signals. Fourth, the proposed method in this
paper does not make good use of the structural information
of whole-brain structure data. In future studies, we plan to
develop information-based models based on understanding the
intrinsic information of whole-brain structure data to smooth
the data information of small areas. It makes the information
valid area in the whole brain data clearer and provides better
input information for visual image reconstruction. Finally,
as research of neural science, it is also important to use
machine learning methods to explore some questions related
to biological information. The proposed TIGAN method is a
fMRI→image path currently. In the future work, we will also
build the image→fMRI path in our model to discover the brain
activation maps for specific stimuli.

VI. CONCLUSION

In this paper, we present a temporal information guided
GAN (TIGAN) method for stimuli image reconstruction from
human brain activities. Three key components are consisted
in the proposed TIGAN method, including a stimuli image

encoder, an LSTM generator and a discriminator for image
reconstruction. The proposed TIGAN is not only a generative
model to model the relationship between the stimuli image
and the evoked brain activities, but also takes the temporal
information of fMRI data into account. Furthermore, the
pairwise ranking loss is introduced to measure the relationship
between the stimuli images and the evoked fMRI scans, which
ensures that the strongly associated pairs are at the top and the
weakly related ones are at the bottom. Experiments on both
the DS105 and the handwritten digits datasets suggest that our
reconstruction model can also achieve better performance in
comparison with state-of-the-art reconstruction methods.
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