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DiffuseGaitNet: Improving Parkinson’s Disease
Gait Severity Assessment With a Diffusion

Model Framework
Arshak Rezvani , Nasrin Ravansalar , Mohammad Ali Akhaee , Andrew J. Greenshaw,

Russell Greiner , Maryam S. Mirian , Muhammad Yousefnezhad , and Martin J. McKeown

Abstract— Assessing the severity of gait impairment
in Parkinson’s disease (PD) using the Movement Disorder
Society’s Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS) is typically performed by clinical experts,
but this process is time-consuming, subjective, and
costly. To address these challenges, we propose a
Guided Diffusion Model with an encoder-only transformer
that automatically predicts gait severity by learning the
underlying distribution of PD gait and leveraging domain
knowledge critical for clinical evaluations. Our diffusion
model enables us to generate synthetic PD gait video
frames conditioned on clinical features determined by
experts to assess disease severity. These synthetic
samples contain novel movement patterns not present in
the observed data; systems trained on this information
have better prediction performance. In addition, we propose
a novel classification algorithm that can learn a predictive
model, from both observed training data and synthetic
samples, to accurately assess PD severity. We evaluate the
effectiveness of the proposed method using two human
motion datasets across two tasks: PD severity prediction
and action classification. Our approach in predicting PD,
and our action classification is sufficiently accurate that it
can be applied to general applications with healthy subjects
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performing similar tasks. The full codebase is available on
GitHub: https://github.com/arshakRz/DiffuseGaitNet

Index Terms— Diffusion models, generative AI, trans-
formers, attention-based networks, Parkinson’s disease,
gait impairments, human action recognition, MDS-UPDRS.

I. INTRODUCTION

PARKINSON’S disease (PD) is a progressive neurodegen-
erative disorder where gait impairment is a significant

motor symptom. Accurate assessment of gait severity is crucial
for effective management and treatment. Traditionally, these
assessments rely on the Movement Disorder Society’s Uni-
fied Parkinson’s Disease Rating Scale (MDS-UPDRS), which,
while comprehensive, is time-consuming, costly, and subject to
inter-rater variability. Advancements in AI offer the potential
to automate and enhance these assessments [1]. However,
existing methods often struggle to capture the complex nature
of PD gait patterns and learning systems are limited by the
availability of high-quality, labeled data. This paper describes
an approach that learns the underlying distribution of variable
gait patterns from PD data and uses it to learn a model that
can accurately evaluate gait severity.

There are many reasons why learning the underlying
distribution of PD gait patterns is useful; it is crucial for
addressing several challenges in the assessment of Parkinson’s
Disease [2]. The variability in gait patterns among PD patients,
coupled with the scarcity of publicly available data due to
privacy concerns, makes it difficult to capture the full spectrum
of symptom variations [3]. Without understanding this
distribution, classification models are prone to overfitting on
limited, labeled datasets, failing to generalize to new, unseen
data. Additionally, class imbalances, where certain PD symp-
toms are underrepresented, further complicate the development
of robust models. Privacy concerns also limit data sharing,
hindering collaboration and validation efforts across institu-
tions. Moreover, many existing classification models struggle
to incorporate measures of uncertainty, reducing their relia-
bility and generalizability in real-world clinical settings [1].

To overcome the challenges in assessing PD gait
dysfunction, our work uses a generative approach to learn
the underlying distribution of PD gait patterns. By accurately
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capturing this distribution, we can better represent the com-
plex and varied nature of PD symptoms, even with limited
data availability. This method not only helps in creating
high-fidelity representations of gait patterns but also enhances
the performance of classification models both in a general
movement perspective and in PD-specific scenario, enabling
them to generalize better, manage class imbalances more
effectively, and incorporate uncertainty measures. In this study,
we propose an innovative method to predict gait severity in PD
patients by leveraging domain knowledge critical for clinical
evaluations. As described in more detail below, we employ
a guided diffusion model with an encoder-only transformer
as a noise predictive network, generating 30-frame windows
of 15 joints in 3D space conditioned on features used by
professionals to assess gait. By using this model, we can train
a classifier using a leave-one-subject-out schema, allowing
us to estimate the gait data distribution of the test subject
and predict their gait score. This method addresses the lim-
itations of traditional clinical assessments and current ML
models, offering a robust, scalable solution for PD gait severity
prediction. We evaluated the effectiveness of the proposed
method using three human motion datasets across two tasks,
demonstrating superior results in PD severity prediction com-
pared to state-of-the-art methods, ultimately contributing to
improved patient outcomes and more efficient clinical results.

The following sections detail: II. Related Work, III. Mate-
rials and Methods, IV. Experiments, and V. Discussion,
demonstrating the potential of guided diffusion models in
transforming PD gait assessment.

II. RELATED WORKS

Classic works on video-based assessment of PD symptoms
have employed methods to manually design PD feature
extraction functions and utilize machine learning (ML) tech-
niques. Random forests [4], [5] and support vector machines
(SVMs) [6] are among the most commonly used approaches
in these classic PD assessment schemes. Some recent studies
have moved towards deep learning (DL) methods to automate
video based PD assessments, facilitating more detailed extrac-
tion and analysis of PD features [7], [8], [9], [10], [11], [12].
To predict the severity of PD from gait videos, authors [7]
proposed a spatial-temporal attention graph convolutional net-
work (2s-ST-AGCN). This model processes 2D predicted
skeletons in two streams, i.e., joints and bones, each through
ten attention-aware ST-GCN units, which are then fused
for severity prediction. Another approach, skeleton-silhouette
fusion [8], extracts features based on skeletons and silhou-
ettes from gait videos, using specialized convolutional layers.
However, these techniques are prone to overfitting when
dealing with small datasets [8].

To mitigate the risk of overfitting, one effective strategy is
to design a more compact network, such as OF-DDNet [9],
which builds on the Double-feature Double-motion Network
(DD-Net) [13]. OF-DDNet processes 3D skeletons using
temporal convolutional units and leverages ordinal-focal
supervision. Since OF-DDNet is a deterministic model, it lacks
measures of uncertainty, which limits its generalizability
across different PD datasets [14]. Another strategy involves

fusing different data types in the latent space and processing
them through a probabilistic model. Incorporating expert
knowledge -which is usually subjective and sometimes
inconsistent between raters- from clinical concepts and class
descriptions by vision-language models [10] or utilizing
them in defining weak supervision labeling functions for
PD classification tasks (WS-PD) [11] are as such examples.
These strategies can reduce overfitting and address the lack
of uncertainty issue, but challenges such as class imbalance
due to small dataset sizes remain significant.

Generative models can help to measure uncertainty by
learning the underlying data distributions [15]. These models
can utilize gait videos involving human motions to extract gait
features more effectively. Building on this idea, Gait Forecast-
ing and impairment estimation transforMer (GaitForeMer) [12]
has been proposed as a human motion forecasting model
that uses an auto-encoder (AE) based on non-autoregressive
transformers [16]. This model also estimates gait severity
from the latent layer of the AE. To reduce the risk of
overfitting, GaitForeMer is first pretrained on a large public
action recognition dataset. However, the non-autoregressive
design of the model can result in increased error accumulation,
which may limit its effectiveness when dealing with long
sequence data [12], [16].

While human motion prediction enhances the detailed
extraction of gait features, human motion generation can also
create new motions, helping to address challenges like small
sample sizes and class imbalances [17]. A common strategy
to guide generated motions is action conditioning [18]. For
instance, Action2Motion [19] employs temporal variational
AEs (VAEs) to generate class-conditional human motions at
the frame level, while Action-Conditioned TransfORmer VAE
(ACTOR) [17] does so at the sequence level using transformer
VAEs. Action-conditioned motion transFormer (Act-
Former) [20] combines the generative capabilities of GANs
with transformers to produce more diverse and long-term
sequences. However, action conditioning alone is insufficient
for generating the stylized and controllable motions required
for PD gait data synthesis. Diffusion models [21], known for
their multi-step processing capabilities, excel in stylization
and controllability in data generation. As an example of a
related study, MotionDiffuse [22] incorporates text-driven
embeddings into a diffusion model at each step to produce
more diverse conditional motions. Below, we empirically
compare our proposed method to some of these approaches.

III. MATERIALS AND METHODS

The proposed method uses a guided diffusion model to
analyze videos annotated with class labels, learning the
underlying distribution of body-part joints position across
frames, conditioned on domain-specific features. The method
is divided into two primary phases: generator training and
classifier training. As illustrated in Fig. 1, during the generator
training phase (Fig. 1, left panel), video footage undergoes
3D pose estimation, generating sequences of body-part joint
positions segmented into windows. Key gait features, identi-
fied through domain-specific knowledge, such as arm swing
symmetry, step length, trunk rotation, step width, and hand
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Fig. 1. The overall process. In the top left, video footage is used for 3D pose estimation, generating sequences of body-part joint positions. These
joint positions are segmented into two-second windows, and domain-specific features used by clinicians to suggest a diagnosis of PD are extracted.
In the top right panel, a diffusion model is trained to learn the distribution of PD gait, conditioned on these features and disease severity. The bottom
left panel shows how this model generates samples mimicking the test set patterns. These samples are then added to the training set to train a
classifier, which predicts the labels of the test set, as shown in the bottom middle panel.

range of motion—are extracted from these sequences. Then a
diffusion model is trained to learn p(frames|class, features),
in which frames are represented as 2D matrices of joint
positions in RN f ×N j . Here, N f denotes the number of frames
in each window, and N j represents the number of joints
multiplied by three to account for each joint’s 3D position. The
window is chosen for two seconds due to the model’s process-
ing constraints, allowing efficient data handling while retain-
ing essential gait features necessary for classification. These
clips have demonstrated sufficient effectiveness in capturing
prominent gait features, contributing to the model’s overall
classification accuracy without excessive computational
demands.

After the model has learned the underlying distribution,
as shown in Fig. 1 (bottom left), an accelerated sampling
technique is employed in the classifier training phase to gen-
erate synthetic data. This synthetic data, which incorporates
random labels and test set features, is combined with the
original training set to form an augmented dataset. The final
classifier is then trained on this enriched dataset, leveraging
both real and synthetic data to improve its robustness. This
classifier is subsequently used to predict the labels of the test
set, ensuring a more reliable and generalized performance.
By integrating domain-specific with advanced diffusion model
techniques, our proposed method provides a robust framework
for PD gait assessment, offering significant improvements in
diagnostic accuracy and reliability.

A. Gait Generation
The denoising diffusion probabilistic model (DDPM) is

a deep generative model designed to generate samples that
mimic the underlying distribution of a dataset. The core idea
is to train a denoiser that progressively improves the quality
of noisy samples, making them increasingly similar to the
original training data. If this process is done effectively, one
can start with pure noise and iteratively refine it through
multiple denoising steps until a sample that reflects the original

distribution is produced. Here, we propose a customized
derivation of this model tailored to effectively capture the
complex dynamics of 3D motion data related to Parkinson’s
disease gait, with the added capability to condition the model
on domain-specific features. A diffusion model consists of
two primary processes: a forward (diffusion) process and a
backward (denoising) process. In the forward process, noise
is incrementally added to the data, creating a sequence of latent
variables that form a Markov chain. This sequence eventually
converges to a standard normal distribution, effectively oblit-
erating the original data point’s information. In the backward
phase, the model is trained to recover the original data point
from its noisy versions, essentially reversing the noise addition
to reconstruct the original data [21].

As introduced before, let N f denote the number of frames in
each window, and N j represent the number of joints multiplied
by three to account for each joint’s 3D position. The data
matrix for a window of gait is expressed as xt ∈ RN f ×N j ,
where the index t indicates the position within the Markov
chain. The distribution of the data at the t th position in the
chain is represented by q(xt ). Let Nc denote the number of
possible classes, and c ∈ RNc be the corresponding one-hot
encoded class label. Furthermore, let Nd denote the number
of domain-specific features, and f ∈ RNd be the associated
feature vector.

The forward diffusion process initiates by sampling
x0 ∼ q(x0) from the original data distribution. At each
subsequent step, small amplitude Gaussian noise is added,
gradually transforming the sample into a noisier version.
By step T (typically chosen as 1000) the sample xT becomes
nearly indistinguishable from a noise sample drawn from the
isotropic Gaussian distributionN (0, I), where I is the identity
matrix with dimensions matching the data. Throughout this
process, each intermediate sample, x1, x2, . . . , xT −1, repre-
sents a progressively noisier transformation of the original
data. This iterative addition of noise serves to transform the
complex original data distribution into a tractable latent space.



REZVANI et al.: DiffuseGaitNet: IMPROVING PARKINSON’S DISEASE GAIT SEVERITY ASSESSMENT 2861

This entire forward (diffusion) process, which transforms
the intricate data distribution into a tractable latent space,
is defined as:

q (x1, . . . , xT | x0) :=

T∏
t=1

q (xt | xt−1) , (1)

and the Gaussian transition between states is defined as:

q (xt | xt−1) := N
(

xt ;
√

1 − βt xt−1, βt I
)

. (2)

where βt values are scalars that control how much noise
is added at each step, Although the values of βt ∈ (0, 1)

could be learned, treating them as hyper-parameters reduces
computational complexity without significantly impacting per-
formance. Therefore, we define them using a fixed schedule.
This schedule specifies the values of βt for each step t =

1, 2, . . . , T , ensuring that the βs are time-dependent and
satisfy the condition βt−1 < βt for every t > 1.

Each intermediate latent state can be computed efficiently
in closed form by defining αt := 1 − βt and αt :=

∏t
s=0 αs ,

as follows:

q (xt | x0) = N
(

xt ;
√

αt x0, (1 − αt )I
)

. (3)

This allows any xt to be expressed directly as a function of
x0 and sampled noise (ϵ ∼ N (0, 1)), bypassing the need to
iterate through the Markov chain:

xt (x0, ϵ) =

√
αt x0 +

√
1 − αtϵ. (4)

This closed-form solution conserves computational
resources by eliminating iterative loops for computing
intermediate states.

The reverse (denoising) process is also a Markov chain,
but with learned Gaussian transitions, starting from p(xT ) =

N (xT ; 0, I) and defined as:

pθ (x0:T ) := p(xT )

T∏
t=1

pθ (xt−1 | xt ) (5)

With µθ and 6θ being neural networks, the Gaussian transi-
tions defined as:

pθ (xt−1 | xt ) := N (xt−1; µθ (xt , t), 6θ (xt , t)) (6)

To explain our choice of reverse process transitions, when βt
is sufficiently small (between 1 × 10−4 to 0.02), the reverse
transition function closely resembles the Gaussian structure
of the forward transition. This similarity is a key aspect of
diffusion models, allowing deep neural networks to estimate
these transitions [23], [24].

Now given the provided latents and their efficient computa-
tion, we can take the usual variational lower bound approach
similar to VAEs to optimize the negative log likelihood, we can
write it as:

L = E[− log pθ (x0)] ≤ Eq [− log
pθ (x0:T )

q(x1:T | x0)
]

= Eq [− log p(xT ) −

∑
t≥1

log
pθ (xt−1 | xt )

q(xt | xt−1)
] (7)

To further simplify optimization, for the reverse process tran-
sitions pθ (xt−1 | xt ) := N (xt−1; µθ (xt , t), 6θ (xt , t)), we set

6θ (xt , t) = σ 2
t I to untrained, time-dependent constants.

Specifically, we set σ 2
t = β̃t =

1−ᾱt−1
1−ᾱt

βt , which is the
upper bound of this value, and the lower bound is σ 2

t = βt .
While it is possible to interpolate 6θ (xt , t) between these
bounds, our choice results in a MSE loss function instead
of the ELBO. This occurs because the terms reduce to the
KL divergence between Gaussian distributions pθ and q. With
fixed Gaussian variances, the KL divergence depends only on
the difference of the means, leading to an MSE loss between
the means of the distributions. Since q follows a Markov
chain that adds noise to the data and we have a closed-form
solution for it, we can reparametrize it as a function of the
starting data point, the noising step, and some arbitrary noise.
We can apply the same approach to pθ , and with some
simplification, derive a loss function that indicates we can
predict the added noise at each step instead of the mean. The
fine details of this derivation can be found in Appendix I.
With this explanation, the simpler loss takes the following
form, where ϵθ , known as the noise predictive network, is a
deep neural network that takes the noisy data point and
noising step to predict the added noise at the given noising
step:

Lsimple (θ) = Et,x0,ϵ

[
∥ϵ − ϵθ (xt , t)∥2

]
. (8)

Conditional Generation: To generate data conditioned on
both the class label and domain-knowledge features, we used
Classifier-Free Guidance (CFG) [25]. This conditioning influ-
ences the generation process, steering it to produce samples
that align with the specified class label and feature vector. The
goal is to learn the target distribution given the class label c
and the feature vector f , which can be expressed as follows:

q(x0 | c, f ). (9)

The CFG is a method to condition the generation process of
the DDPMs that works by introducing the conditions to the
noise predictive network by modifying it as:

ϵθ (xt , t, c, f ). (10)

In earlier approaches, conditional generation was achieved
using a pre-trained classifier that predicted the condition of
the input sample. For example, when generating handwritten
digits, the model could be conditioned to produce a specific
digit by using a classifier trained to predict the digit label. This
process involved incorporating the classifier’s gradients with
respect to the input to steer the generation. While effective,
this method required a pre-trained classifier on the dataset.
However, in our case, since the objective is to predict the
labels, we cannot use this approach.

In contrast, in CFG, instead of training a separate classifier,
we incorporate the conditions directly as inputs to the noise
predictive network. This allows the network to learn to shape
the output as intended to generate samples with the specified
conditions. We train an unconditional DDPM, denoted as
pθ (x0), parameterized through a noise predictive network
ϵθ (xt , t), alongside a conditional model pθ (x0|c, f ), parame-
terized through ϵθ (xt , t, c, f ). A single neural network is used
to parameterize both models. For the unconditional model,
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we simply input a null token ∅ as the condition identifier
c when predicting the score, i.e., ϵθ (xt , t) = ϵθ (xt , t, c =

∅, f = ∅). We jointly train both the unconditional and
conditional models by randomly setting elements of c to
the unconditional class identifier ∅ with a certain probability
puncond , which is treated as a hyper-parameter. The sam-
pling process is performed using a linear combination of
conditional and unconditional score estimates. Here, w ∈

R is the coefficient that controls the ratio, known as the
guidance weight, a hyper-parameter that balances the trade-off
between diversity and fidelity in the generated samples. Higher
values of w reduce variety while enhancing alignment with
desired features. The sampling is described by the following
equation:

ϵ̃θ (xt , t, c, f ) = (1 + w)ϵθ (xt , t, c, f ) − wϵθ (xt , t) . (11)

The updated loss function with incorporation of conditions
into learning the distribution is as follows:

Lsimple (θ) = Et,x0,c, f ,ϵ

[
∥ϵ − ϵθ (xt , t, c, f )∥2

]
. (12)

Noise Predictive Network Architecture: The problem
of training a conditional DDPM is reduced to training a
neural network called the Noise Predictive Network, denoted
as ϵθ (xt , t, c, f ). This network takes the following inputs
(Fig. 1, top middle): Noisy frames (xt ), which represent the
data at the current noising step t ; Noising step (t) itself,
a scalar indicating the current step in the diffusion process;
Domain-specific features ( f ), a vector of features that pro-
vide conditions for the generation process; and Class (c),
a one-hot encoded vector that represents the class label
used as a condition for generation. The goal is for the
network to predict the noise added to the data at each step,
which is used to gradually reverse the diffusion process
and generate samples conditioned on the given features and
class.

To handle these inputs and capture the time-series nature
of gait data, we implemented a transformer-based architec-
ture to model the complex dynamics of 3D human motion
(Fig. 1, top right). The network consists of transformer
attention blocks. The first block uses self-attention to capture
temporal dependencies within the joints positions, while
subsequent blocks compute cross-attention to incorporate
noising step and conditions of generation such as domain-
specific features. These later blocks compute cross-attention
between the embeddings of t , f , and c and the output
from the previous layer. This arrangement enables each
layer to refine its focus on specific aspects of the data,
incorporating external conditions to improve the model’s
performance.

Since xt is a time series, a linear layer projects xt at each
time step. In contrast, t , f , and c are static values without time
dependencies; these are first projected into vectors using linear
layers, then reshaped into matrices, and processed through
an additional linear layer to match the shape of xt , making
them compatible for use in transformer layers. To better
capture the sequential nature of the data, sinusoidal positional

embeddings are added to the projection of xt to account for the
time-series nature of the data, ensuring the model understands
the order of the sequence. The final layer of the network
is a linear projection layer that maps the embeddings back
to the original joint position space. We employed weight
tying between the linear layer for xt and the output layer,
using the same weight matrix enhances model optimization
and reduce the parameter count. These layers do not include
biases.

Accelerated Sampling: To sample from the learned dis-
tribution using a diffusion model, we employed the Denois-
ing Diffusion Implicit Model (DDIM) sampler introduced
by [26]. DDIMs accelerate the sampling process by utilizing
Non-Markovian transitions instead of Markovian ones. This
defines a generative procedure that allows sampling with
fewer steps while maintaining the same training objectives
as DDPMs. These transitions are designed to yield the same
marginal distribution as DDPMs, which means we can opti-
mize the same model for both. For detailed mathematical
explanations, please refer to the original paper. They demon-
strate that by selecting a subset of steps for generation, instead
of all the steps in the Markov chain, we can achieve the
same loss, and the terms not included in the subset are
independent of neural network parameters. This approach
effectively reduces computational load and significantly speeds
up the sampling process. The reverse transitions in the
DDIM sampler, using significantly fewer steps, are defined as
follows:

xt−1 =
√

αt−1

(
xt −

√
1 − αtϵ

(t)
θ (xt )

√
αt

)
+

√
1 − αt−1 − σ 2

t · ϵ
(t)
θ (xt )

+ σtϵt , (13)

where ϵt ∼ N (0, I) is standard Gaussian noise independent
of xt , and we define α0 := 1.

B. Classification
After training the Diffusion Model conditioned on features

and labels, we generate a synthetic dataset with random labels
from all classes and test set features using (13) (Fig. 1,
bottom left) during the classifier training phase. In CFG
(the framework for training conditional DDPMs), the hyper-
parameter puncond controls how often the model receives null
conditions, enabling it to learn from incomplete information.
By randomly masking features and class labels with puncond ,
the model learns to generate data for various combinations of
conditions, including those with missing information. Previous
studies [27], [28], [29] have shown that Diffusion Models can
effectively handle such independent conditions. Leveraging
this, we independently mask features and labels with puncond ,
allowing the model to generate data based on any combination
of conditions, including random class labels and test set
features p(frames|class). The synthetic dataset, mimicking test
set patterns, is added to the original training set (Fig. 1, bottom
middle), and we then train a classifier on the augmented
dataset. Algorithm 1 summarizes the proposed method.
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Algorithm 1 Conditional Distribution-Based Classification
Input: Train set comprising datapoints (X train), labels (ytrain),
and extracted features ( ftrain), and test set comprising data-
points (X test ) and extracted features ( ftest )
Parameter: Number of classes (numclasses) and Number of
synthetic samples to generate (nsamples)
Output: Predictions for ytest using a classifier trained on
synthetic and observed data

1: Learn conditional distribution (pθ ) of X train with ytrain
and ftrain as conditions based on (12).

2: Generate a synthetic labels ysynt by uniformly sampling
nsamples from the discrete set {1, 2, . . . , numclasses}

3: Generate a synthetic dataset Xsyn by sampling from
the distribution pθ conditioned on ysyn and ftest based
on (13).

4: Train a classifier φ using [Xsyn, X train] and [ysyn, ytrain].
5: Predicting test labels ytest using classifier φ from X test

IV. EXPERIMENTS

We conduct our experiments using three human motion
datasets:

• PD-Gait (A) [11]: This dataset comprises 3D skeletal
data from 15 key joints, collected from 29 individu-
als diagnosed with early-stage PD, with severity scores
of 0 (slight) and 1 (moderate). Participants were filmed
walking along an oval path for approximately 4 minutes,
with videos recorded at 15 frames per second (fps).
Each participant was assessed by a certified clini-
cal research assistant using the Movement Disorder
Society-sponsored Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS). Due to ethical concerns related to
patient privacy, the dataset is not publicly available.

• HumanAct12 (B) [19]: This publicly available dataset
comprises 3D skeletal data with 24 joints, spanning 1,191
motion clips that are categorized into 12 distinct action
types.

• UESTC RGB-D (C) [30], [31]: This dataset contains
25,600 video clips of varying-view action data, featuring
40 classes of aerobic exercises. We utilized the 3D
skeletal data from 25 joints across all eight different
views.

We used dataset A for predicting PD severity, while the
other two datasets (healthy subjects) were utilized for action
classification. Additionally, all datasets were employed for the
motion generation task.

To evaluate the proposed method against state-of-the-art
approaches, we considered three external benchmarks as well
as an internal baseline derived from the DiffuseGaitNet frame-
work. This baseline involves training the classifier directly on
real gait data without any diffusion-based data augmentation—
i.e., an end-to-end classification model using only the raw
input data and the same architecture as used in our method.
It serves to isolate the contribution of the synthetic data gen-
eration and conditioning modules in DiffuseGaitNet, enabling
a controlled comparison.

The baseline was evaluated on both PD and action classifi-
cation tasks. For external comparisons, WS-PD [11] serves as
a benchmark for PD severity estimation. It employs a simple
MLP trained on 3D poses using a weak supervision structure,
where labels are derived from predefined PD gait features.
As these labeling functions are dataset-specific, WS-PD is only
applicable to the PD-Gait dataset. GaitForeMer [12] was used
as another benchmark for both PD and action classification.
We pre-trained this model on the NTU-RGB+D dataset [32],
which contains 3D skeletal data for human action recognition,
and then fine-tuned it on datasets A, B, and C.

To assess the motion generation capabilities of the pro-
posed method, we compared it with ActFormer [20] across
all three datasets, as ActFormer represents a state-of-the-art
approach for motion generation. We conducted the comparison
of synthetic and test data based on scores obtained from
an ST-GCN [33]. To standardize the experimental condi-
tions, we extracted 30-frame clips from all videos using
a sliding window approach and selected the same 15 key
joints from each clip. For the PD-Gait (A) dataset, we also
extracted 15 features from the 3D human poses relevant to
Parkinson’s disease gait assessment—such as step length, foot
clearance, hip and knee flexion, and step width—following
the approach used in WS-PD [11]. These features were
used in both the corresponding experiment and the proposed
method. For the other datasets, we extracted nine features
that capture body part dynamics and are pertinent to action
classification.

For the experiments on dataset A, we applied a leave-
one-subject-out cross-validation (LOSO-CV) approach at the
window level, following the methodology outlined in [11].
In each iteration, one subject’s data windows were set aside
for testing, while the model was trained on the windows of
the remaining 28 subjects. This LOSO-CV setup was chosen
to ensure robust evaluation across subjects and reduce the risk
of overfitting to specific individuals.

We reported accuracy, precision, recall, and F1 scores as the
evaluation metrics, presented as m ±SE%. Here, m represents
the average metric calculated at the subject level. To obtain
m, we first classify each window for the test subject, then use
majority voting to aggregate these window-level classifications
into a single label for the subject. The metric (e.g., accuracy
or F1 score) is then calculated based on this aggregated
subject-level label, providing a measure of overall performance
for each test subject. The standard error (SE) quantifies the
variability in the metric across all test subjects. For each
subject, we calculate the metric at the window level by
evaluating the model’s predictions for all windows belonging
to that subject (e.g., if a subject has 1,000 windows and the
F1 score for these predictions is 0.85, this score represents the
window-level performance for that subject). We then compute
SE by taking the standard deviation of these window-level
metric values across all subjects and dividing it by the square
root of the number of subjects,

√
N . This provides a measure

of the consistency of the metric m across the dataset, with
a smaller SE indicating more reliable performance across
subjects.



2864 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 33, 2025

For the action classification task, we employed 5-fold cross-
validation, reporting accuracy as m ± SE%, where m is
the mean and SE represents the standard error percentage,
averaged across all folds.

Experiment Design: We trained a DDPM for each dataset,
completing approximately 5k/3k/2k epochs per fold for
datasets A/B/C, using a linear noise schedule over 1000 steps
for βs with values ranging from 1 × 10−4 to 0.02. For
the Noise Predictive Network (ϵθ (xt , t, c, f )), we employed
mixed float16 precision, with the unconditional probability
puncond fixed at 0.2.

The network architecture included 4/5/4 transformer
attention blocks each containing 128/512/256 attention heads
for datasets A/B/C, respectively. The dimensions for queries
(q), keys (k), and values (v) were all set to 16, balanc-
ing computational efficiency and model performance. The
embedding dimension was configured to 128/512/512 for
datasets A/B/C. All linear layers within the transformer blocks,
including those in the embedders and the dense layers of the
MLPs, utilized a dropout rate of 0.1 and the L2 regularization
factor of 0.001. The weight-tied input and output projection
layers did not use dropout but instead applied a higher L2
regularization factor of 0.01 to enhance stability and prevent
overfitting in critical input/output mappings. The ReLU acti-
vation function was used throughout the model, and layer
normalization with ϵ = 1×10−6 was applied within the model
layers.

The models were optimized using the AdamW optimizer,
selected for its effective weight decay mechanism that reduces
overfitting, particularly beneficial for larger datasets. A cosine
learning rate schedule was applied, with initial learning rates
of 1e − 3/1e − 4/1e − 4 for datasets A/B/C, respectively.

Training was conducted on a system running Ubuntu
22.04.3 LTS, with TensorFlow 2.15.0, and the NVIDIA driver
version 535.154.05. Training deep learning models — espe-
cially diffusion models and Transformer-based classifiers —
is inherently resource-intensive. In our setup, the complete
pipeline required approximately 10-12 GPU hours per subject
using the two NVIDIA TITAN RTX GPUs. However, this
computational demand is limited to the training phase.

At inference time, the resource requirements are substan-
tially reduced. By employing key-value (KV) caching during
Transformer inference, memory usage and latency are signif-
icantly lowered. This optimization enables the model to run
efficiently on standard clinical hardware, including mid-range
GPUs or high-performance CPUs, making the framework
viable for deployment in real-world clinical environments with
limited computational capacity.

For each fold, we generated 400/128/128 batches of
256/128/128 data points for datasets A/B/C, respectively, using
50 sampling steps and a guidance strength (w) of 0.9. The
generated data was then concatenated with the fold’s training
data and shuffled. For training the classifier, we used a
transformer-based architecture with the same parameters as
the generator. The data was processed through a linear layer
to obtain the embedding size, followed by sinusoidal positional
encoding. The architecture comprised four transformer layers,
followed by global max pooling to reduce the data from a

time series to a vector, with a simple MLP performing the
final classification task.

A. Results
We evaluated the proposed method on three datasets:

PD-Gait, HumanAct12, and UESTC, comparing the per-
formance against state-of-the-art models, including WS-PD,
GaitForeMer, ActFormer, and a baseline (classifier trained on
real data). The results are summarized in Fig. 2 and Fig. 3.

On the PD-Gait dataset, the proposed method achieved
superior results, significantly outperforming the benchmarks
across all metrics, including accuracy, precision, recall, and
F1 score. Compared to WS-PD, which uses weak supervision,
our proposed method provides a more robust and detailed
prediction of PD severity, further confirming the effectiveness
of incorporating domain-specific features in the generative
process.

On the HumanAct12 dataset, which focuses on action
classification in healthy subjects, our proposed method showed
strong performance, achieving an accuracy of 85.36. The syn-
thetic data generated during training provided diverse exam-
ples of actions, enhancing the classifier’s ability to generalize
across a variety of movement types. The HumanAct12 dataset,
though simpler than PD-Gait in terms of task complexity and
clinical relevance, demonstrated the model’s consistency in
generalization across real and synthetic data. The inclusion
of domain-specific features, such as body part dynamics,
enabled the model to better represent motion data, improving
classification accuracy compared to methods like ActFormer.

The UESTC dataset presented significant challenges for
both the proposed method and prior state-of-the-art models
like ACTOR [17]. The proposed model achieved the accuracy
of 61.99, and while this is lower than other datasets, it is
worth noting that the authors of ACTOR [17] reported simi-
larly low accuracy on UESTC (42.4) despite their sequence-
level approach. This indicates that the low accuracy is likely
due to the inherent complexity of the dataset rather than a
shortcoming of our model alone. UESTC consists of aerobic
exercises captured from multiple views, and these sequences
require a broader temporal understanding of movements.
While ACTOR’s [17] sequence-level approach is generally
more suited for long-term actions, their model also struggled
on UESTC due to the difficulty in representing the complex
rotational and positional data. Similarly, our proposed method,
which uses a 30-frame window focusing on 3D joint positions,
faces challenges in capturing long-term dependencies across
multiple views, leading to the observed drop in accuracy.
For datasets like UESTC, where long-term dependencies are
crucial, synthetic data alone could not fully overcome the
limitations posed by the complexity of the dataset. While
synthetic data enhanced generalization to some extent, the
absence of a sequence-level modeling approach remains a
challenge for datasets involving more complex, long-term
actions.

B. Ablation Studies
We conducted a comprehensive ablation study to evaluate

the contribution of different components in DiffuseGaitNet,
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Fig. 2. Quantitative results of the proposed method, a baseline, and three benchmarks tested on the PD-Gait dataset (A). All models are trained
using the LOSO-CV scheme. Results are presented as m ± SE%, where SE = 0.00 for WS-PD due to its unique weakly supervised design, which
produces deterministic labels with no SE. Models labeled with “-Syn” indicate synthetic data generated by the corresponding method.

including the effect of synthetic data, domain-specific condi-
tioning in the diffusion model, and the choice of classifier.

a) Effect of Synthetic Data and Conditioning: To assess
the impact of synthetic gait sequences, we compared three
settings: (1) training with real data only, (2) using additional
synthetic data generated without conditioning, and (3) using
synthetic data generated with domain-specific conditioning
on clinical features (e.g., step length, trunk rotation, arm
swing symmetry). The results demonstrate that conditioning
significantly enhances the quality of generated sequences and
leads to superior classification performance.

b) Effect of Classifier Architecture: We also compared two
classifiers: a standard XGBoost model and the proposed
Transformer-based architecture. While both classifiers ben-
efited from the addition of synthetic data, the Transformer

consistently outperformed XGBoost, especially when trained
with conditionally generated sequences. This highlights the
strength of the proposed architecture in modeling complex
temporal and structural patterns in gait data.

These results confirm that both domain-specific condition-
ing and the choice of classifier significantly impact the overall
performance of the system.

V. DISCUSSION

The discussion section highlights the key contributions and
implications of our guided diffusion model for PD gait sever-
ity assessment. The proposed method not only demonstrates
superior performance compared to existing methods but also
leverages synthetic data generation and 3D avatar visualization
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Fig. 3. Quantitative results of the proposed method, a baseline, and three benchmarks tested on the HumanAct12 dataset (B) and the UESTC
dataset (C). All models are trained using a 5-fold cross-validation scheme. Results are presented as m± SE%. Models labeled with “-Syn” indicate
synthetic data generated by the corresponding method.

to enhance clinical utility. By addressing ethical considera-
tions and improving the interpretability of predictions, our
proposed method represents a significant advancement in the
automated evaluation of PD gait, offering both practical and
clinical benefits. Below, we discuss the clinical applications,
comparative performance, impact of synthetic data, advantages
of the generative model, and relevant ethical considerations.

A. Clinical Applications
The proposed DiffuseGaitNet model has significant

potential for real-world clinical applications, particularly in
neurological assessment and rehabilitation. One of the pri-
mary advantages of this approach is its ability to automate
Parkinson’s Disease (PD) gait severity assessment, reduc-
ing reliance on subjective clinical evaluations such as
MDS-UPDRS, which are time-consuming and prone to
inter-rater variability. By leveraging synthetic gait samples
alongside real patient data, our model can provide objective,
consistent, and scalable gait assessments that may support
telemedicine applications and remote patient monitoring. This
capability is particularly valuable in underserved or remote
areas, where access to movement disorder specialists is lim-
ited. Additionally, DiffuseGaitNet can serve as an assistive tool
in clinical decision-making, helping neurologists track disease
progression and optimize treatment strategies. By providing a
quantitative and automated gait assessment, this model could
enhance longitudinal monitoring of PD patients, allowing for
more precise tracking of symptom fluctuations in response to
medication or therapy.

B. Comparative Performance
To evaluate the generalizability of our approach beyond

Parkinsonian gait, we applied our model to two additional
human motion datasets—HumanAct12 and UESTC—in

TABLE I
ABLATION RESULTS SHOWING THE EFFECT OF SYNTHETIC DATA,

CONDITIONING, AND CLASSIFIER ARCHITECTURE

addition to the PD severity prediction task. Across all datasets,
the proposed method consistently outperformed or matched
state-of-the-art models, demonstrating its effectiveness for
both clinical and general human action recognition tasks. On
PD-Gait, we outperformed the weakly supervised WS-PD
model and the self-supervised GaitForeMer in both accuracy
and precision. On HumanAct12, our proposed method
performed competitively, matching or slightly surpassing the
performance of ActFormer in terms of classification accuracy.
The diffusion model’s ability to model uncertainty and
generate realistic samples provided a clear advantage in tasks
where real-world data was limited. Although the proposed
method underperformed on UESTC compared to datasets like
PD-Gait and HumanAct12, the low accuracy is in line with
what was observed by the authors of ACTOR [17], who also
faced difficulties with this dataset. This suggests that UESTC
poses significant challenges due to its inherent complexity,
and both sequence-level and frame-level approaches struggle
to fully capture the nuances of the data.

C. Impact of Synthetic Data
One of the key innovations of our proposed method is the

generation of domain-knowledge-guided synthetic gait data
to supplement the limited real-world datasets available for
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PD. The scarcity of large, labeled clinical datasets poses
a major challenge, often resulting in overfitting and poor
generalization. To address this, we leverage a guided diffusion
model to synthesize gait sequences conditioned on clinically
relevant features such as step length, arm swing symmetry,
trunk rotation, and stride variability. This approach enhances
the training process through two complementary mechanisms.
First, by incorporating expert-defined biomechanical patterns
of Parkinsonian gait into the generated samples, the classifier
learns to associate these meaningful variations with symptom
severity more effectively. Second, the synthetic data enriches
the feature space by introducing previously unseen but biome-
chanically plausible gait variations, helping to overcome class
imbalance—particularly for underrepresented severity levels—
and enabling the model to generalize better to unseen subjects.
As a result, our classifier trained on this augmented dataset
demonstrates enhanced robustness and predictive accuracy,
as reflected in improved performance across held-out test
sets and multiple datasets. Beyond improving model per-
formance, the synthetic data also offers new insights into
subtle movement patterns associated with PD that may not
be captured in limited real data, with potential implications
for both research and clinical interpretation. Looking forward,
we plan to refine the conditioning strategies and investigate
feature weighting schemes to further enhance both model
interpretability and clinical utility. Extending the model to
assess a broader spectrum of gait-related motor impairments
could also support deeper understanding of disease progression
and therapeutic response.

Furthermore, we collaborated with a movement disorder
neurologist to qualitatively assess the realism of the synthetic
gait sequences. A series of 2-second stick-figure animations—
comprising both real and synthetic data from PD and healthy
control (HC) subjects—were presented in random order with-
out labels. The clinician was asked to identify whether each
sample represented a PD or HC gait and provide a brief justi-
fication. The neurologist was able to correctly identify many
PD vs. HC samples and noted that the synthetic PD samples
exhibited hallmark gait abnormalities such as reduced stride
length and decreased arm swing, while synthetic HC samples
showed smooth, coordinated movement. This suggests that our
model successfully captures meaningful and recognizable gait
features relevant to Parkinsonian motor impairment. Refer to
the supplementary material section for viewing the 2-second
synthetic gaits evaluated by a movement disorder specialist.

D. Generative Model Advantages
The use of a guided diffusion model in this study offers

several advantages over traditional generative approaches for
analyzing PD gait. Unlike models that rely solely on observed
data, our diffusion model can generate novel gait sequences
that are realistic and clinically relevant. This capability is
crucial for understanding the full spectrum of gait impair-
ments in PD, which often exhibit subtle variations that are
difficult to capture with standard methods. Furthermore, the
multi-step processing nature of diffusion models allows for
more precise control over the generated data, enabling the
creation of stylized motions that closely align with clinical

observations. A particularly innovative aspect of the proposed
method is the creation of 3D representations of avatars based
on the generated gait sequences. These avatars provide a visual
and interactive representation of a patient’s gait, allowing
neurologists to better imagine and understand the patient’s
condition. This visualization aids in bridging the gap between
quantitative model predictions and clinical intuition, enabling
more informed and nuanced clinical assessments. The ability
to visualize patient-specific gait patterns in 3D helps neurol-
ogists to identify subtle changes and variations in movement,
which could be crucial for early detection and personalized
treatment planning in PD. The enhanced controllability and
fidelity of the generated data, combined with the 3D avatar
visualization, distinguish the proposed method from previous
methods, making it a valuable tool for both predictive model-
ing and exploratory analysis in neurodegenerative diseases.

E. Ethical and Practical Considerations
The integration of synthetic data generation into clinical

assessment frameworks raises important ethical and practical
considerations. While the use of synthetic data mitigates
privacy concerns associated with sharing real patient data,
it also introduces questions about the authenticity and
reliability of the generated sequences. Ensuring that synthetic
data accurately reflects the clinical reality of PD gait is
paramount, as any deviation could lead to incorrect diagnoses
or treatment plans. To address these concerns, our model
incorporates domain-knowledge features explicitly derived
from clinical expertise, ensuring that the synthetic data remains
grounded in real-world clinical practices. Additionally, the
diffusion model’s ability to manage uncertainty provides a
safeguard against over-reliance on synthetic data, enhancing
the overall reliability of predictions. Practically, the adoption
of such models could facilitate broader data-sharing initiatives
across institutions, enabling more collaborative research
without compromising patient confidentiality. As these
technologies advance, it will be crucial to establish clear
guidelines and standards for the ethical use of synthetic data
in clinical decision-making. One last issue is about the chosen
window length. While our diffusion model successfully utilizes
2-second clips, we acknowledge that clinical assessments
typically prefer longer video sequences. Extended video clips
enable clinicians to observe a broader range of movement
patterns and detect subtle anomalies in gait that may not appear
in shorter clips. For PD specifically, extended sequences
provide more comprehensive information on movement
regularity, step consistency, and trunk sway over time.
In future work, we aim to expand the model’s applicability by
incorporating longer video clips, such as 10-second sequences,
to capture a more representative sample of patient gait. Testing
with extended clips would not only better meet clinical
expectations but could also improve the model’s robustness
and generalizability across varied movement patterns.

VI. CONCLUSION

In this work, we introduced DiffuseGaitNet, a guided diffu-
sion model framework for improving Parkinson’s disease gait
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severity assessment. By conditioning on clinically meaningful
gait features and generating synthetic but biomechanically
plausible sequences, our model enhances classification perfor-
mance while maintaining clinical interpretability. We demon-
strated that synthetic data improves generalization, mitigates
class imbalance, and expands feature diversity beyond the
limitations of real-world datasets. Future work will focus on
clinician-in-the-loop refinement using 3-D gait visualizations
and reinforcement learning with human feedback, aiming
to align generative outputs more closely with neurologists’
diagnostic criteria and further bridge the gap between AI-
driven modeling and clinical decision-making.
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APPENDIX I
MATHEMATICAL DETAILS OF DDPM [21]

The loss function defined in 7 can be further simplified to
this three term loss:

Eq

[
DKL(q(xT | x0)∥p(xT ))︸ ︷︷ ︸

LT

+

∑
t>1

DKL(q(xt−1 | xt , x0)∥pθ (xt−1 | xt ))︸ ︷︷ ︸
L t−1

+ − log pθ (x0 | x1)︸ ︷︷ ︸
L0

]
(14)

Equation (14) uses KL divergence to directly compare
pθ (xt−1|xt ) against forward process posteriors, which are
tractable when conditioned on x0:

q (xt−1 | xt , x0) = N
(

xt−1; µ̃t (xt , x0) , β̃t I
)

where µ̃t (xt , x0) =

√
ᾱt−1βt

1 − ᾱt
x0 +

√
αt (1 − ᾱt−1)

1 − ᾱt
xt

and β̃t =
1 − ᾱt−1

1 − ᾱt
βt (15)

The loss function in (14) consists of three terms. The
first term, LT , is constant during training and can be
ignored because the variances βt in the forward process are
fixed to constants, making the approximate posterior q non-
learnable. The second term, L t−1, represents the KL diver-
gence between two Gaussian distributions at different noising
steps. Since we have fixed the variances with pθ (xt−1 | xt ) :=

N (xt−1; µθ (xt , t), σ 2
t I), we can express it as follows:

L t−1 = Eq

[
1

2σ 2
t

∥∥µ̃t (xt , x0) − µθ (xt , t)
∥∥2
]

+ C (16)

where C is a constant that does not depend on θ . Thus,
we observe that the simplest parameterization of µθ is a model
that predicts µ̃t , the posterior mean of the forward process.

However, we can use the closed-form solution of (4) and write
x0 =

1
√

ᾱt
(xt −

√
1 − ᾱt ϵ) and replace it in (16) to get:

L t−1−C

= Ex0,ϵ

[
1

2σ 2
t

∥∥∥∥µ̃t (xt ,
1

√
ᾱt

(xt −

√
1 − ᾱt ϵ)) − µθ (xt , t)

∥∥∥∥2
]

(17)

Then we can replace µ̃t with applying the forward process
posterior formula (15) and get:

L t−1−C

= Ex0,ϵ

[
1

2σ 2
t

∥∥∥∥ 1
√

αt

(
xt −

βt
√

1 − ᾱt
ϵ

)
− µθ (xt , t)

∥∥∥∥2
]
(18)

Equation (18) reveals that µθ must predict 1
√

αt

(
xt −

βt√
1−ᾱt

ϵ
)

given xt . Since xt is available as input to the model, we may
also reparameterize µθ as:

µθ (xt , t) =
1

√
αt

(
xt −

βt
√

1 − ᾱt
ϵθ (xt , t)

)
(19)

By plugging (19) into (18) we can derive this loss:

Ex0,ϵ

[
β2

t

2σ 2
t αt (1 − ᾱt )

∥∥∥ϵ − ϵθ

(√
ᾱt x0 +

√
1 − ᾱtϵ, t

)∥∥∥2
]

(20)

It is beneficial to ignore the t-dependent coefficients that
are multiplied by the MSE loss. This is because frequency
analysis shows that optimizing the loss for different t values
is akin to optimizing the generation of details across various
frequencies. Therefore, we can treat the detail generation of
different frequencies as equally important by disregarding the
coefficients.

For the last term, L0, we can approximate it as Gaussian
with learned parameters, similar to the reconstruction term in
VAEs [34]. In this context, the negative log-likelihood of a
Gaussian distribution simplifies to a MSE, up to a constant
factor. Additionally, we can ignore the coefficients for this
term since they do not affect the optimization, as they are
constants that do not influence the gradients or reltive scaling
of other terms in the loss function.

All of this allows us to express a simplified loss function
for training DDPMs, the same as (8), as follows:

Lsimple (θ) = Et,x0,ϵ

[
∥ϵ − ϵθ (xt , t)∥2

]
. (21)
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